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Task representations are critical for cognitive control and adaptive behavior. The hierarchical organization of task representa-
tions allows humans to maintain goals, integrate information across varying contexts, and select potential responses. In this
study we characterized the structure and interactive dynamics of task representations that facilitate cognitive control. Human
participants (both males and females) performed a hierarchical task that required them to select a response rule while consid-
ering the contingencies from different contextual inputs. By applying time- and frequency-resolved representational similarity
analysis to human electroencephalography data, we characterized properties of task representations that are otherwise diffi-
cult to observe. We found that participants formed multiple representations of task-relevant contexts and features from the
presented stimuli, beyond simple stimulus–response mappings. These disparate representations were hierarchically structured,
with higher-order contextual representations dominantly influencing subordinate representations of task features and
response rules. Furthermore, this cascade of top-down interactions facilitated faster responses. Our results describe key prop-
erties of task representations that support hierarchical cognitive control.
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Significance Statement

Humans can adjust their actions in response to contingencies imposed by the environment. Although it has long been
hypothesized that this ability depends on mental representations of tasks, the neural dynamics of task representations have
been difficult to characterize. Our study used electroencephalography data from human participants to demonstrate the neu-
ral organization and interactive dynamics of task representations. Our results revealed a top-down, hierarchically organized
representational structure that encoded multiple contexts and features from the environment. To support cognitive control,
higher-level contextual representations influenced subordinate representations of task-relevant features and potential
responses, facilitating response selection in a context-dependent manner. Our results provide direct evidence of organiza-
tional properties of task representations, which are cornerstones of cognitive control theories.

Introduction
Human behavior is adaptive to different contexts. Our actions
are not governed by immutable rules but can be adjusted
to meet changing conditions—or contextual contingencies—from
the environment. Cognitive control enables such adaptive behavior
by maintaining task representations of goals, context, and potential
responses (Sakai, 2008; Schumacher and Hazeltine, 2016; Cohen,
2017). Theses maintained representations influence perceptual,

motor, and cognitive processes to align actions with goals and
context (D’Esposito, 2007), and thus task representations are
an integral component of cognitive control.

To support cognitive control, task representations should
encode multiple features and contexts from the environment
to allow individuals to consider and integrate information from
different sources and select the most appropriate action. For
example, representations of abstract, contextual goals (e.g., drive
cautiously near a playground) can influence subordinate repre-
sentations of intermediate goals (e.g., speed of driving) and im-
mediate actions (e.g., step on or off the gas pedal). Thus, task
representations can be hierarchically organized (Botvinick, 2008;
Badre and Nee, 2018). This hierarchical structure is advanta-
geous when subjects must generate different responses to the
same stimuli depending on different contexts.

Although it is thought that the human brain maintains task
representations to facilitate cognitive control (Braver, 2012;
Badre et al., 2021), there is still limited neural evidence for the
dynamics and structure of hierarchical task representations.
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In the laboratory, hierarchical cognitive control is often studied
by administering tasks that involve multiple levels of contextual
contingencies. For example, in a simple stimulus–response (S–R)
task the correct response can be directly determined by the stim-
ulus, whereas in a hierarchical task, subjects are required to
determine the correct response by considering the contingencies
among context, stimulus, and response. In tasks with varying lev-
els of contingencies, functional magnetic resonance imaging
(fMRI) studies have identified caudal frontal regions to be associ-
ated with executing simple S–R associations, whereas rostral
midlateral prefrontal regions are associated with performing
hierarchical tasks (Badre and D’Esposito, 2007). However, most
existing studies have used univariate analyses and neglected the
distributed and multivariate nature of neural representations
(Diedrichsen and Kriegeskorte, 2017; Waskom and Wagner,
2017; Kikumoto and Mayr, 2020). Moreover, it is difficult to at-
tribute differences in univariate response amplitudes to differ-
ences in task representations, given other components of task
designs that differ between simple S–R tasks and hierarchical
tasks (e.g., differences in stimuli complexity, difficulty, task
instruction, and response requirement). Different levels of rep-
resentations exist within a hierarchical task representation, yet
the interactions between these different representational levels
are not well understood.

The goal of the current study was to obtain neural evidence
for the hierarchical organization and interactive dynamics of
task representations. Specifically, we ask the following ques-
tions: First, can we decode the neural representations of task-
relevant contexts and features? Second, can we determine how
different components of task representations are structured?
Third, can we characterize the interactive dynamics of these dif-
ferent components, leading to appropriate behavioral responses?
To address these questions, we conducted an EEG study in which
human subjects performed a hierarchical control task. Subjects
selected the correct response for a match-nonmatch judgment
while considering the contingencies from different contexts. We
analyzed both behavioral and EEG data to probe task representa-
tions. For the behavioral data, we used a transitional reaction
time (RT) analysis to determine how different models of task
representations can influence switch costs in RT (Dykstra et al.,
2022). To obtain neural evidence of task representations, we per-
formed representational similarity analysis (RSA) on EEG data
to decode task-relevant contexts, features, and response repre-
sentations. To determine the structure of task representations,
we performed Granger causality analysis (GCA) to test the dy-
namics of hierarchical interactions between representations. To
determine the behavioral relevance of task representations, we
conducted a structural equation modeling (SEM) analysis to
determine how representational interactions influence trial-by-
trial RT. Our results indicate that task representations are hier-
archically structured, through which the highest level contextual
information influences subordinate representations before a
response, and the strength of the response-rule representation
correlates with trial-by-trial variability in performance. These
results reveal the structure and dynamics of task representations
that are critical for hierarchical cognitive control.

Materials and Methods
Subjects. Forty healthy subjects (20 male, 18–35 years old, mean age

22.4) were recruited from the student body and surrounding areas of the
University of Iowa. Subjects gave informed consent, and the study proce-
dure was approved by the University of Iowa Institutional Review
Board. Subjects were compensated with either money or class credit for

their participation. Three subjects were excluded because of hardware
issues rendering data unusable, and one subject was excluded because of
excessive head motion. After exclusion, 36 subjects were included for the
analyses.

Task design and stimuli. The paradigm was designed to engage hier-
archical cognitive control (Fig. 1A). Subjects were first presented with
one of eight different colored geometric cues, immediately followed by a
probe image of either a face or a scene. Subjects were required to make a
button response to the probe according to one of two response rules
(Face rule: Is the image a face? Scene rule: Is the image a scene?). For
each trial, the cue was displayed for 0.5 s and varied across three attribute
dimensions, shape, color, and texture fill. The probe images were pic-
tures of a face or scene and remained on the screen for a maximum of 2
s or until the subject responded. The subjects can adopt a hierarchical
representation of the task, in which the correct rule could be determined
by evaluating different attributes of the cue, thus imposing response con-
tingencies. The context, which is the fill texture of the cue (solid vs hol-
low), was first to be ascertained. This context determined which feature
of the cue the subject should use to determine the response rule. A solid
cue required subjects to next evaluate whether the cue was a circle or a
square. Conversely, a hollow cue indicated subjects should evaluate the
color of the cue, blue or red. Each feature was then mapped to either the
face or scene response rule (Fig. 1B). After adopting the correct response
rule, subjects executed a keyboard press with either the number one key
or or the zero key, corresponding to yes and no, in accordance with the
response rule and on viewing the probe image. The mappings between
the texture of the cue and the shape/color feature were balanced and
switched for half of the subjects as were the mappings of the one key or
zero key for yes or no. Trials were separated by an intertrial interval
ranging between 3.4 and 4.6 s long, during which a central fixation cross
was displayed. To ensure subjects understood the task, we first adminis-
tered a self-paced tutorial of the task and practice session. The hierarchi-
cal task rules were relayed to participants verbally (no task schematics
were shown), and participants therefore knew which aspects of the stim-
uli to evaluate to determine their response. During the practice session,
explicit feedback (correct or incorrect) was given after each trial, and
total accuracy feedback was provided after the end of each practice block.
During the practice session the experimenter monitored performance
and answered questions from the subjects. The practice block was
repeated until the subject achieved a practice accuracy of 80% or higher.
In total each subject performed 415 trials over six blocks.

To infer the representational structure of the task from behavioral
data, we performed a transitional RT analysis (Dykstra et al., 2022).
Briefly, a transitional RT matrix was constructed for each subject by
calculating the RT differences (switch cost) when switching between dif-
ferent cues (Fig. 2). Assuming switch cost reflects similarities in the

Figure 1. Behavioral paradigm and task representation. A, Subjects were first presented
with a cue, followed by a probe picture. Subjects were required to respond to the probe
according to a response rule determined by the cue. B, We hypothesized that to determine
the correct response rule, subjects formed a hierarchical representation of attributes to deter-
mine the correct response rule. The highest level of contextual information informed which
midlevel feature was task relevant, and this feature mapped to the correct response rule. We
counterbalanced the mapping between context and shapes across subjects.
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underlying task representations (Allport et al., 1994),
the transitional RT matrix can reveal structures of task
representations. If subjects formed a flat representation
with no hierarchical relationship among attributes, we
would expect no systematic patterns in the transitional
RT matrix. Alternatively, if subjects formed hierarchical
representations of tasks, we would expect the patterns of
switch cost to reflect such representational structure. We
therefore regressed the off-diagonal components of the
observed transition RT matrices onto representational
models that reflect our hypothesized task structure (Fig.
2). We evaluated a restricted and a full model. For both
models, we included the representation of individual cue
identities, predicting the general switch cost between dif-
ferent cues, and a response-rule representation, predict-
ing switch cost of switching between face and scene
response rules. For the full model, we included represen-
tations of context and feature attributes that we hypothe-
sized to form hierarchical representations (Fig. 1B).

EEG data collection and preprocessing. EEG data
were collected using a BioSemi ActiveTwo 64-channel
system with a sampling rate of 512Hz. Sixty-four Ag
AgCl Pin-Type Active electrodes were applied to a fit-
ted cap filled with electroconductive gel. To record
muscle, eyeblink, and heartbeat-related activity, we
also applied external electrodes on mastoids, around
the eyes, and on the nose and left wrist.

Data were preprocessed using MNE-Python soft-
ware (Gramfort et al., 2013). Raw data were first fil-
tered using a finite impulse response lowpass filter of 50Hz. Data from
each channel were plotted, and noisy electrodes were rejected then inter-
polated (on average 1.03 channels rejected per subject, range 0–5). Data
were re-referenced to the mastoid electrodes and epoched from �0.8 to
3 s time windows time locked to the probe onset. Epoched data were vis-
ually inspected, and noisy epochs were rejected (on average 3.5 of the
415 epochs were rejected per subject). Data were then subjected to an
independent component analysis (ICA) using the fastICA algorithm
(Bell and Sejnowski, 1995); noisy components that were characteris-
tics of eyeblink or muscle artifacts were rejected. On average 3.3 of 64
independent components were rejected per subject.

Time-frequency and decoding analysis. Because past studies suggest
that neural signals from different frequency bands carry task-relevant in-
formation for hierarchical cognitive control (Buschman et al., 2012;
Voytek et al., 2015; Riddle et al., 2021, 2020), we performed time-fre-
quency transformation on our EEG data. Single-trial EEG epochs were
convolved with a family of complex wavelets to obtain the following
time-frequency spectrum:

Gðt; f Þ ¼ 1ffiffiffiffiffiffiffiffiffi
2p f

p exp
�t2

2s 2

� �
expði2p ftÞ;

where t is the time point within the trial epoch, f is the frequency that
increased from 1 to 40Hz in 30 logarithmically spaced steps, and s is
defined as follows:

n=2p f ;

where n increased from 3 to 10 also in logarithmical steps. This spacing
was used to balance the time and frequency resolutions. For each time
point, power was calculated using the squared amplitude of the resulting
complex spectrum.

To determine whether EEG data contained task-specific information,
we performed decoding analysis using the linear discriminatory analysis
(LDA) implemented via the scikit-learn package (Pedregosa et al., 2011).
Specifically, we used the observed EEG data as training features and trials
as observations to decode individual cue types separately for each time
point. For time-resolved decoding, whole-scalp potentials from 64 chan-
nels were used as features, whereas for time-frequency decoding, power

values from the wavelet analysis were used as features. To prevent overfit-
ting, we repeated 10 runs of k-fold cross-validations by randomly parti-
tioning trials into four independent folds. Three folds were used as the
training set, and the remaining one was used as the test set. Resulting
classification probabilities were averaged across the 10 cross-validated
runs. For each time point, frequency, and trial, this decoding analysis
returned a confusion profile of classification probabilities for each cue.
We repeated the same time-frequency decoding analysis to decode con-
text (texture fill of the cue, i.e., filled, or hollow), task-relevant feature (the
relevant cue feature, i.e., color, red or blue; or shape, circle or square),
and response rule (face or scene).

Representational similarity analysis. To determine the representa-
tional structure of our task, we applied RSA to the confusion profiles
from LDA predicting individual cues. Specifically, for each subject we
regressed the trial-by-trial confusion profiles onto the following repre-
sentational models: context, task-relevant feature, individual cue identity,
and response rule (Fig. 2). These representational models were orthogo-
nal, with variance inflation factors (VIFs) all smaller than three (VIF val-
ues, context = 1.54 feature = 2.46, cue identity = 1.54, task = 2.46, mean r
among models� 0.23). Each model describes which cues share an attrib-
ute and further predict that decoding probability will increase among
cues that shared the same attribute. For example, cues that share the
same solid or hollow texture fill will exhibit similarly increased decoding
probabilities in the confusion profile. In the regression model, decoding
probabilities were log transformed and entered as the dependent vari-
able, and representational models were simultaneously entered as regres-
sors. Trial-by-trial RTs were entered as a covariate, and error trials and
trials with overly long RT (5� the SD) were excluded from this analysis.
The resulting regression coefficients were treated as representational
strengths of each representation, and the time-frequency varying pat-
terns of coefficients reflected the representational dynamics. The statisti-
cal significance of representational strength was determined using a
randomized permutation test (see below, Cluster-based permutation
test). Note that we opted to evaluate representational strength with this
approach instead of comparing raw prediction accuracy from LDA
because the baseline accuracy between predicting individual cues (chance
level, 12.5%) and context or features (chance level, 50%) were not compa-
rable. Therefore RSA is a more suitable method as it can simultaneously
evaluate the relative representational strengths of multiple models.

Granger causality analysis on representational dynamics. After obtain-
ing the representation strength of context, task-relevant feature, and

Figure 2. RT matrix and representational models. Top left, Task representation. Bottom left, The transitional RT
matrix depicts the switch cost (difference in RT) for switching between trials with different cues. Trials that repeated
the same cue were removed from this matrix. The color bar, on the right, indicates the magnitude of switch cost,
normalized by mean and SD within each subject. Middle and right, The representation models predict patterns of
switch cost based on the assumption that switching between trials with similar representations will show smaller
switch costs. The observed transitional RT matrix was simultaneously regressed onto these models to evaluate their
ability in explaining variances in switch cost patterns.
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response rules, we then tested patterns of hierarchical interactions
among these representations. To this end, we tested the strengths of
directional interactions among representations by performing GCA
(Barnett and Seth, 2014; Seth et al., 2015). For each subject, we first
epoched the representational time courses that covered the cue and the
probe period. We then subtracted the mean from each representational
time series and divided by the SD. The normalized time series were
entered into an autoregressive model, and the model order was deter-
mined using the Bayesian information criterion, explored between
10 and 100ms. Granger causality values were estimated in a bivariate
fashion, fully crossing between representations (context, feature, cue
identity, response rule) and frequencies (1–40Hz). This procedure
resulted in matrices describing the strength of cross-frequency direc-
tional interactions among representations. To determine the statistical
significance, we calculated a dominant influencing pattern measure
between two representations (for example X and Y) by subtracting the
Granger causality values of X-to-Y from Y-to-X. We then used cluster-
based permutation tests to determine statistical significance. A signifi-
cant result suggests that one representation was dominantly influencing
another representation stronger in one direction than in the reverse
direction.

Cluster-based permutation test. To test for statistical significance of
representational strength and Granger causality patterns, we per-
formed nonparametric cluster-based permutation tests to control for
multiple comparisons (Maris and Oostenveld, 2007). For representa-
tional strength, we first performed one-sample t tests by testing the
observed regression coefficients across subjects against a null value
of zero for each time-frequency sample. For GCA, we contrasted the
difference of influencing directions (X-to-Y vs Y-to-X) for every fre-
quency pair. We then determined the uncorrected statistical threshold
of t = 2.04, which corresponds to an uncorrected significance threshold
of p , 0.05, and clustered continuous time-frequency samples that
exceeded this uncorrected threshold. We calculated the cluster statis-
tical mass by summing the t statistics within each cluster. We then
randomly permuted the sign of the observed values 1000 times, recal-
culated the cluster mass for each randomized permutation, and
pooled the results to derive empirical null distributions of cluster
masses. Significant effects could only occur by chance in these null distribu-
tions, thus satisfying the null hypothesis of no effect. The corrected signifi-
cance value was determined by the proportion of values in the null
distribution that were greater than in the original observed unpermuted
cluster mass. This approach controls for multiple comparisons by testing
the significance of a single cluster mass rather than performing a separate
significance test for each time-frequency sample.

Structural equation modeling. To determine the behavioral rele-
vance of task representations, we tested a path model that describes a
hierarchical relationship among representations and trial-by-trial RT.
This analysis required us to obtain trial-by-trial estimates of represen-
tational strengths. To obtain such trial-by-trial estimates, for each trial,
we pooled the confusion profiles from a broad frequency range (1–
40Hz) during the cue (the full 500ms) and the response period (the
first 500ms for response-rule representations). This pooling procedure
ensures sufficient observations to conduct the RSA regression proce-
dure separately for each trial. We then repeated the RSA regression to
obtain trial-by-trial estimates of context, feature, and cue identity. We
entered these trial-by-trial representational estimates and RT data into
an SEM analysis. To account for nonindependence in the data, we
adopted cluster-robust SEs by including the participant as the cluster-
ing variable.

For the path model, we hypothesize that the strength of the response-
rule representation influences RT, whereas the response-rule representa-
tion receives input from the feature representation. The feature represen-
tation in turn receives input from the context representation. We predict
that the cue identity representation will have a weaker effect on the
response-rule representation when compared with the feature representa-
tion, indicating that subjects adopted a hierarchical representation to infer
the appropriate response rule rather than memorizing S–R mappings for
each individual cue. The path coefficients of these relationships were eval-
uated with structural equational modeling using the lavaan package (version

0.6) in R software (Rosseel, 2012). Acceptable model fit was evaluated using
the following established cutoffs: comparative fit index (CFI) � 0.95, root
mean square error of approximation (RMSEA) , 0.08, and standardized
root mean square residual (SRMR)� 0.08 (Schreiber et al., 2006).

Data availability. Code and data are available at https://github.com/
HwangLabNeuroCogDynamics/TaskRep.

Results
Behavioral results
Subjects performed a hierarchical control task (Fig. 1A) in which
the correct response rule can be determined by evaluating differ-
ent attributes of the cue if subjects engaged hierarchical cognitive
control (Badre and Nee, 2018). We hypothesized that subjects
formed a hierarchical representation of attributes to determine
the correct rule (Fig. 1B). Specifically, subjects first considered
the highest level contextual attribute (whether the cue was filled
with color or hollowed in texture). This higher-level contextual
attribute further informs which lower-level feature is task rele-
vant (color or shape); the feature was then mapped to the correct
response rule.

Subjects performed the task accurately (mean accuracy =
0.91, SD = 0.07, mean reaction time = 825ms, SD = 169ms). We
then preformed the transitional RT analysis (see above, Materials
and Methods) and found that the regression coefficient for con-
text representation was statistically significant (b = �0.22, t =
4.048, p , 0.001, 95% confidence interval, �0.112 to �0.322),
suggesting that switching between cues within the same contexts
showed a smaller switch cost. Regression coefficients for feature,
cue identity, and response-rule representations were not statisti-
cally significant. We further evaluated two models, a full model
incorporating context, feature, cue identity, and response-rule
representations versus a restricted model including only cue
identity and response-rule representations. Model comparison
showed that the full model outperformed the restricted model
[F(2,2012) = 9.4, p , 0.001; full model Akaike information crite-
rion (AIC) = 5919, restricted model AIC = 5934; full model
Bayesian information criterion (BIC) = 5942, restricted model
BIC = 5949]. This indicates that switching between contexts can
explain significantly more variances in switch cost patterns than
the restricted model assuming a flat representation. We also
tested an alternative model in which all squares mapped to the
scene task (except the hollow red square), and all circles mapped
to the face task (except the hollow blue circle), altogether form-
ing four groups of representations. We reasoned that if subjects
adopted such a strategy, switch cost would increase in trials that
switched between these four groups of representations. We
entered this alternative model and the response rule model into
our transitional RT regression analysis and found that this model
did not explain a significant amount of variance in the observed
transitional RT patterns (b = �0.0295, SE = 0.05, t = �0.592, p =
0.55, 95% confidence interval, �0.127 to 0.068), indicating no
statistically significant switch costs when switching among these
four representations. In summary, our behavioral results suggest
that subjects formed task representations beyond individual cues
by extracting contextual information from the presented stimuli.
We performed additional analyses on the simultaneously col-
lected EEG data to further explore the structure and dynamics of
neural representations.

Decoding of EEG data
To determine whether EEG data contain task-specific informa-
tion, we conducted a time-resolved decoding analysis to predict
individual cues from EEG trial epochs. For each time sample,
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whole-scalp potentials were used to train
LDA classifiers using a four-fold cross-vali-
dation procedure (see above, Materials and
Methods). Decoding results were then com-
pared with an empirical null distribution of
predictions trained with 1000 randomly
shuffled cue labels. We found above-chance
decoding performance; immediately after
the cue onset, elevated decoding accuracy
lasted throughout the cue period, showed
another transient increase after the probe
onset, and lasted through the first second of
the probe period before falling to chance
level (Fig. 3A). This temporal pattern is
consistent with a hypothetical mental chro-
nometry of evaluating the presented cue to
determine the correct response rule. In
addition to the temporal decoding analysis,
we further performed a time-frequency
decoding analysis using band-specific fre-
quency power (ranging from 1 to 40Hz) at
each time point as training features. After
both cue and probe onsets, we found above
chance decoding in a broad frequency
range (1–30Hz; Fig. 3B).

We then repeated the time-frequency
decoding analysis for decoding context
(filled vs unfilled texture), shape (circle
vs square), color (red vs blue), and
response rule (face vs scene). After both
cue and probe onsets, we found above
chance decoding in a broad frequency
range (Fig. 4). Context (texture) had the
strongest decoding accuracy when com-
pared with color, shape, and task (con-
text vs color, t(36) = 9,74, p , 0.001;
context vs shape, t(36) = 7,62, p , 0.001;
context vs task: t(36) = 9,82, p , 0.001).
These results suggest that task information
can be decoded from the multivariate
time-frequency patterns of EEG activity.

Representation similarity analysis
We performed RSA (Kriegeskorte et al., 2008; Kikumoto and
Mayr, 2020) to evaluate the representational structures that can
explain the observed multivariate EEG decoding results
presented in Figure 3B. First, for each subject, trial, and
time-frequency measurement, we performed LDA and obtained
classification probabilities for each of the eight possible task cues.
The observed posterior probabilities were converted into confusion
profiles and regressed onto representational models of context, fea-
ture, cue identity, and response rule (Fig. 5A). All model regressors
were simultaneously evaluated via linear regression, and the
resulting coefficients and their associated t statistics indi-
cated the unique variances in EEG decoding patterns explained
by each representational model. Henceforth, the resulting regres-
sion coefficients can be interpreted as the representational
strength of different task representations. Only correct trials
were included in the analysis, and reaction times were entered
as a covariate. Statistical significance was determined via a cluster-
based randomized permutation procedure.

We found statistically significant coding of context, feature,
and cue identity representations (Fig. 5). For context, relevant

feature, and cue identity representations, clusters in the observed
data were extended between the delta to theta frequency range
(1–8Hz) after the cue and probe onsets (Fig. 5B). For context
and cue identity representations, clusters were also observed in
alpha and beta frequency ranges (8–30Hz) and for context rep-
resentation, the slower delta frequency range (1–4Hz). For rele-
vant feature and response-rule representations, clusters in the
observed data overlapped in the delta frequency range and after
the probe onset (Fig. 5B). These results suggest distinct represen-
tations of different attributes were constructed for the task.

Interaction between representations
We further explored patterns of interactions between the repre-
sentations shown in Figure 5B to determine the hierarchical
structure of these representations and identify which representa-
tions exhibited directional interaction with other representations.
For each subject, we obtained the time series of context, feature,
cue identity, and response-rule representations by extracting
regression coefficients from the full-time-frequency RSA analysis
(Fig. 5B). We then performed GCA on the representational
time series to examine the directional interactions between
representations. GCA was performed separately for each fre-
quency pair. To determine the direction of interactions between

Figure 3. Decoding accuracy for individual cues. A, Time-resolved decoding accuracy. Shaded errors represent 95% confi-
dence interval across subjects. B, Time-frequency decoding accuracy, thresholded by the 95th percentile from the empirical null
distribution. For all graphs, x-axis is time in seconds.

Figure 4. Decoding accuracy for context, color, shape, and response rule. Decoding accuracies thresholded by the 95th per-
centile from the empirical null distribution. For all graphs, x-axis is time in seconds.
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two representations—for example, from context to feature—we per-
formed cluster-based permutation tests to contrast the strength
of Granger causality values from context to feature versus
those from feature to context. A statistically significant
result indicates that one representation was dominantly influ-
encing another representation.

We found significant influencing interactions from context
(texture of the cue identity) to feature (color or shape of the cue),
from task-relevant feature (color or shape of the cue identity) to
response rule (face or scene rule), and from cue identity to
response rule (Fig. 6). Clusters in the observed data overlapped
with the delta frequency band (1–4Hz). We did not find any sig-
nificant effects between other representations, nor did we find
any significant influencing interactions from a lower-level repre-
sentation to a supraordinate representation. This suggests a top-
down hierarchical structure of task representations. This pattern
of interaction is consistent with the notion of hierarchical infor-
mation flow between representations, where the higher-level
context influences feature and rule representations to facilitate
cognitive control.

Structure of task representations
To test the role of task representations facilitating behavioral per-
formance, we tested a path model (see above Structural equation
modeling) specifying the structure of representations and

examined its relationship with RT using SEM (Fig. 7). Fit
indices suggest the hypothesized hierarchical relationship
among representations explained the observed patterns in
the data (CFI = 0.999, RMSEA , 0.001, SRMR = 0.014;
Model Test User Model, x 2 = 5.72, p = 0.24; Model Test
Baseline Model, x 2 = 3964.41, p , 0.001). We found that
context representation was significantly associated with the
feature representation (b = 0.149, SE = 0.009, z = 16.89, p ,
0.001), and further found significant associations between fea-
ture and rule representations (b = 0.121, SE = 0.008, z = 15.41,
p , 0.001), and between rule representation and RT (b =
�0.02, SE = 0.004, z = �4.59, p , 0.001). Note that the path
coefficient was negative between rule representation and RT,
indicating that robust rule representation correlated with faster
RT. We further found significant paths between feature and cue
identity representations (b = 0.738, SE = 0.01, z = 75.23, p ,
0.001) and between cue identity and context representations
(b = 0.242, SE = 0.01, z = 23.47, p , 0.001). Critically, we
found that the path coefficient between response rule and cue
identity representations was significantly weaker than the path
coefficient between feature and rule (difference in b = 0.089,
SE = 0.012, z = 7.49, p , 0.001), suggesting information from
feature representation was used to determine the response
rule. We further compared this hierarchical model with a flat
model, which hypothesizes that subjects relied on individual
cue identity representations to determine the appropriate
response rule and thus did not construct a hierarchical rela-
tionship among cue identity, feature, and context representa-
tions (Fig. 6B). Comparing these two nested models indicate
that the hierarchical model fit significantly better than the
flat representation model (hierarchical model, AIC = 129451,
BIC = 131221, x 2 = 5.72; flat model, AIC = 135534, BIC =
137629, x 2 = 6096.28; x 2 difference = 6090.6; degrees of free-
dom difference = 4, p , 0.001).

To summarize, results from the SEMmodel provide further sup-
port of a hierarchical structure of task representations. Specifically,
we observe a cascade of information flow from context to feature.
Feature-to-response-rule representations influence trial-by-trial

Figure 5. Time-frequency RSA. A, Overview of analytical approach. Trial-by-trial decoding
results for each time-frequency data point were converted into confusion matrices, where
each cell represents the posterior probability from decoding. The vector of confusion profiles
across trials was then regressed onto representational models of different task attributes. B,
Statistic (t) values of regression coefficients for each representation model. Significant clusters
determined using cluster-based permutation test (p, 0.05 corrected). For all graphs, x-axis
is time in seconds, time point �0.5 s depicts cue onset, and time point 0 depicts probe
onset.

Figure 6. GCA on representational time series. Significant clusters determined by cluster-
based randomized permutation test (p, 0.05). Far left, The color bar depicts the difference
in Granger causality values; positive values represent top-down influencing direction, nega-
tive values represent bottom-up influencing direction. For all graphs, the x-axis and y-axis
indicate the frequency of the representational time series. A significant cluster indicates
strong influencing interaction from one representation to another in a given frequency pair.
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RT, supporting the notion that hierarchical task representations
facilitate goal-directed behaviors. Critically, this was not
observed for cue identity.

Discussion
Task representations are an integral component of cognitive con-
trol (Cohen et al., 1990; Rougier et al., 2005; Braver, 2012; Badre
et al., 2021). For task representations to be useful, relevant infor-
mation from disparate contextual sources should be maintained
and allowed to interact with one another, generating actions that
satisfy contextual contingencies. However, the content and dy-
namics of task representations have been difficult to study.
Behavioral measures, for example RT switch cost and dual-task
cost, can infer boundaries and similarities between representa-
tions (Arrington et al., 2003; Hazeltine and Schumacher, 2016)
but have no direct access to neural representations. Univariate
response amplitudes measured with neuroimaging techniques,
such as blood-oxygenated-level-dependent signal, can function-
ally localize changes in activity corresponding to experimental
manipulations (Badre and D’Esposito, 2007; Koechlin et al.,
2003) but cannot be used to identify multivariate representa-
tional content (Freund et al., 2021). Furthermore, the relatively
slow temporal resolution of fMRI makes it difficult to detect
interactions between representations, which likely occur at the
time scale of milliseconds. Recent methodological advances in
combining EEG with RSA directly address these limitations.
Specifically, the structure of task representations can be revealed
by testing models of information representation with multivari-
ate brain activity patterns (Kriegeskorte et al., 2008; Nili et al.,
2014). Applying RSA to time-resolved EEG data can track the
representational dynamics of cognitive chronometry (Hubbard
et al., 2019; Kikumoto and Mayr, 2020). The present study
adopted these methodological advances to study how task repre-
sentations facilitate hierarchical cognitive control.

Consistent with the notion that task representations encom-
pass information beyond simple S–R mappings (Hazeltine and
Schumacher, 2016; Schumacher and Hazeltine, 2016), we iden-
tified representations of contingent contextual information
from multiple relevant sources. Neural evidence for representa-
tions of context, cue features, cue identity, and response-rule
representations were observed. To further characterize how

these representations interact to facilitate hierarchical control,
we subsequently performed GCA and SEM analyses. We found
that higher-level contextual representation influenced subordi-
nate representations of task-relevant features and response
rules, bridging the cascade of information transfer between
stimuli input to response selection in a context-dependent
manner. Below, we discuss how our findings reveal properties
of hierarchical task representations.

Useful task representations should be behaviorally rele-
vant. Results from our SEM analysis showed that response-
rule representation exhibited the strongest correlation with
RT. Moreover, our GCA results showed that response-rule
representation was in turn under the influence of higher-
order representations including context and cue features. We
found that the interactions between representations were asym-
metric; context representation dominantly influenced feature
representation, and feature representation dominantly influ-
enced response-rule representation. We did not find significant
influencing interactions from response-rule representation to
higher-order representations. This asymmetric interaction sug-
gests a top-down, hierarchical structure of constituent repre-
sentations. This observation is further consistent with theories
of cognitive control where response selection is constrained
by hierarchically organized contextual information (Botvinick,
2008; Badre and Nee, 2018). The identified hierarchical cascade
of representational interaction directly supports the top-down
control processes in previously proposed models of cognitive
control (Norman and Shallice, 1986; Cohen et al., 1990; Posner
et al., 2004).

An alternative explanation is that subjects form a flat repre-
sentation associating each individual cue identity with a response
rule. Behaviorally, if subjects had adopted such a flat representa-
tion with no hierarchical relationship, then we would not have
observed structural switch costs when subjects switched between
trials presented with different cues. Our behavioral results did
not support this prediction, and instead a regression analysis
revealed that a model with hierarchical context representation
can explain significantly more variances in switch cost patterns
beyond a flat representation. Results from our SEM analysis on
representational dynamics also favored the hierarchical interpre-
tation. Specifically, the path coefficient between the cue identity
representation and the response-rule representation was signifi-
cantly weaker than that between feature and context represen-
tations. This result suggests that subjects likely did not rely on
memorizing eight individual S–R mappings to determine the
correct response rule but instead used a hierarchical context-to-
rule mapping. More broadly, our results are consistent with
previous observations that human subjects can learn and form
hierarchical representations of tasks (Collins and Frank, 2013;
Eichenbaum et al., 2020; Vaidya et al., 2021), which has been
argued to have the advantage of reducing memory load and
increasing efficiency for satisfying complex response contin-
gencies (Badre et al., 2010; Frank and Badre, 2012).

Although our results suggest a hierarchical structure of
task representations, they do not suggest a strict step-like,
sequential order of transition from context to rule represen-
tations. Instead, given that multiple representations were
simultaneously activated, interactions among constituent
representations likely occurred simultaneously. These par-
allel neural dynamics of hierarchical interaction are consist-
ent with behavioral results reported from a previous study
using a response-deadline manipulation (Ranti et al., 2015).
Ranti et al. (2015) observed similar error rates across

Figure 7. Path model testing the hierarchical structure of task representations. A,
Hierarchical model hypothesizing that higher-order contextual and feature representations
influence response-rule representation for optimal task performance. B, Flat representation
model hypothesizing that the subject relies on individual cue identities to determine the cor-
rect response rule. Model comparison indicates that the hierarchical model outperforms the
flat model. The asterisk (*) denotes statistically significant path coefficients (p , 0.05). All
path coefficients were standardized coefficients.
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different contingency levels, regardless of the amount of
time given to subjects to make a response. This suggests that
subjects do not traverse multiple hierarchical levels in a serial
fashion. Instead, after extracting information from relevant
sources, information across hierarchical levels is processed in
parallel to converge on the most appropriate response rule.
Such a parallel processing scheme may be more efficient for
hierarchical cognitive control when compared with a strictly se-
rial step-like decision process.

Our EEG data cannot pinpoint the precise anatomic localiza-
tion or circuit mechanisms that instantiate task representations
across hierarchy levels. Past studies suggest that the frontal and
parietal cortices are likely important for task representations. For
example, prior fMRI studies that used multivoxel pattern analysis
were able to successfully decode rule representations from frontal
and parietal cortices (Woolgar et al., 2011; Waskom et al., 2014;
Cole et al., 2016; Etzel et al., 2016; Pischedda et al., 2017; Qiao et
al., 2017), and tasks that required contextual control over actions
more selectively involved the middle lateral prefrontal cortex
(Badre and D’Esposito, 2007; Nee and D’Esposito, 2016; Vaidya
et al., 2021). It is conceivable that task representations decoded
from our EEG data were primarily driven by these frontal
(and potentially parietal) regions. Whether the representa-
tions we observed across different contingency levels were
encoded by common, overlapping, or segregated regions will
need to be addressed by applying RSA to data with greater
spatial specificity.

We performed LDA and RSA on both time- and fre-
quency-resolved EEG data because past research on nonhu-
man primate models suggests that electrophysiology signals
from different frequency bands may encode rule representa-
tions (Buschman et al., 2012; Siegel et al., 2015). Henceforth,
including frequency information may increase our sensitivity
in identifying task representations. We observed that clusters
from the randomized permutations test for context and feature
representations overlapped with the delta to beta frequency range
and for response-rule representation in the delta frequency range.
These observations are consistent with prior studies showing that
delta and beta neural oscillations may be associated with different
aspects of hierarchical cognitive control; specifically, delta signal
may be involved in hierarchical abstraction of tasks for resolving
multiple contingencies, whereas beta band oscillations may inhibit
competing task sets (Riddle et al., 2021, 2020). Other studies sug-
gests that alpha band oscillatory power decrease during tasks that
switch among contextual contingencies (Cooper et al., 2016), which
may reflecting task updating processes.

It is important to point out that prior studies focused on con-
trasting the oscillatory magnitudes between task conditions and
did not focus on determining the representational content nor
the interactive dynamics among different levels of representa-
tions. Our results suggest that different levels of hierarchical rep-
resentations are encoded by our subjects. We found statistically
significant top-down interactions between context, feature, and
response-rule representations. Clusters in observed interaction
data overlapped with the delta frequency range, and we hypothe-
sized that delta signal may be a carrier frequency integrating
distinct representations across different levels of hierarchy. We
cannot determine whether this effect was driven by spatially over-
lapping or segregated anatomic regions encoding representations
with similar or distinct oscillatory signals. Another important limi-
tation of our study is that although we counterbalanced which
stimuli dimension (texture, shape, color) was assigned as the task-
relevant feature, we did not counterbalance which was assigned as

the context in the task hierarchy. This limits the generalizability of
our findings on whether the context of our task can be generalized
to other dimensions of the cue. This critical issue will need to be
addressed by future studies.

In summary, task representations have long been thought
to be critical for context-dependent, adaptive cognitive con-
trol. However, the way in which task representations can
integrate information from multiple task-relevant features to
satisfy contextual contingency has been difficult to study.
The principal contribution of our study is the characteriza-
tion of the hierarchical structure and interactive dynamics of
task representations. Our results relate top-down cognitive
chronometry with multivariate EEG activity and uncover
latent dynamics of human information processing for hier-
archical cognitive control.
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