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A B S T R A C T   

Intrinsic, unconstrained neural activity exhibits rich spatial, temporal, and spectral organization that undergoes 
continuous refinement from childhood through adolescence. The goal of this study was to investigate the 
development of theta (4− 8 Hertz) and alpha (8− 12 Hertz) oscillations from early childhood to adulthood (years 
3–24), as these oscillations play a fundamental role in cognitive function. We analyzed eyes-open, resting-state 
EEG data from 96 participants to estimate genuine oscillations separately from the aperiodic (1/f) signal. We 
examined age-related differences in the aperiodic signal (slope and offset), as well as the peak frequency and 
power of the dominant posterior oscillation. For the aperiodic signal, we found that both the aperiodic slope and 
offset decreased with age. For the dominant oscillation, we found that peak frequency, but not power, increased 
with age. Critically, early childhood (ages 3–7) was characterized by a dominance of theta oscillations in pos-
terior electrodes, whereas peak frequency of the dominant oscillation in the alpha range increased between ages 
7 and 24. Furthermore, theta oscillations displayed a topographical transition from dominance in posterior 
electrodes in early childhood to anterior electrodes in adulthood. Our results provide a quantitative description 
of the development of theta and alpha oscillations.   

1. Introduction 

Decades of research suggest that rhythmic fluctuations in electrical 
potentials generated by neuronal activity, known as neural oscillations, 
are intimately linked to brain function and behavior (Uhlhaas et al., 
2010; Voytek and Knight, 2015). Neural oscillations are ubiquitous 
phenomena in extracellular local field potentials, intracranial electro-
corticography, and extracranial electroencephalography (EEG) re-
cordings. Oscillations can be induced by external task manipulations, 
spontaneously expressed in resting-state or unconstrained conditions, 
and have been extensively studied in both humans and nonhuman pri-
mates (Cohen, 2017). Mechanistically, neural oscillations are known to 
be generated by circuit mechanisms that operate across temporal and 
spatial scales. For example, oscillations may reflect interactions between 
glutamatergic pyramidal neurons and GABAergic inhibitory in-
terneurons (Cardin et al., 2009; Sohal et al., 2009), excitability of a 
cortical region (Haegens et al., 2011; Iemi et al., 2017), and coordinated 
neural activity between distributed brain networks (Buschman and 

Miller, 2007; Gregoriou et al., 2009; Saalmann et al., 2012). 
This functional diversity is also reflected in the frequency organiza-

tion of neural oscillations. Neural oscillations can be partitioned into 
different bands of frequencies, ranging in adult human EEG from delta 
(2–4 Hertz), theta (4− 8 Hertz), alpha (8− 12 Hertz), beta (12–30 Hertz), 
to gamma-band (30–100 Hertz)— though the specific frequency ranges 
used for analysis of these oscillatory bands vary greatly between adults 
and children (Bell and Cuevas, 2012; Marshall et al., 2002). Each fre-
quency band may be driven by a distinct set of cellular or circuit 
mechanisms and serve different behavioral functions. For instance, 
theta-band activity has been shown to be involved in top-down control 
(Cavanagh and Frank, 2014; Riddle et al., 2019) and working memory 
(Riddle et al., 2020a). Whereas alpha-band power in adults is thought to 
index the inhibition of task-irrelevant processes that distract attention 
and working memory functions (Foxe and Snyder, 2011; Klimesch et al., 
2007; Riddle et al., 2020b). Thus, neural oscillations can be useful 
descriptive indices for bridging neural dynamics and brain functions. 

Given this significance, clarifying the relationship between neural 
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oscillations and development should be a major goal for developmental 
cognitive neuroscience. One major step towards achieving this goal is to 
characterize the development of spontaneous, intrinsic, neural oscilla-
tions unconstrained by task conditions. Intrinsic neural activity is known 
to exhibit an organized spatial structure in the form of functional brain 
networks, which undergoes continuous refinement from childhood 
through adolescence (Cui et al., 2020; Marek et al., 2015). Intrinsic 
activity is organized into spatially distributed functional networks, as 
measured by resting-state functional magnetic resonance imaging 
(fMRI), which have proven useful in capturing individual differences 
and developmental variability related to behavioral phenotypes (Seitz-
man et al., 2019; Uddin et al., 2010). Similarly, spontaneous neural 
oscillations reflect dynamic activity at the network level with greater 
temporal resolution than fMRI (Deco et al., 2011; Hipp et al., 2012). 
Thus, elucidating the development of spontaneous neural oscillations 
augments resting-state fMRI studies by elucidating the dynamics of 
intrinsic brain activity. Such effort may be significant for identifying 
when and which component of neural dynamics may go awry during 
atypical development (Uhlhaas et al., 2010; Uhlhaas and Singer, 2011). 
Characterizing the developmental change of spontaneous neural oscil-
lations is the primary motivation of our study. 

To date, many longitudinal and cross-sectional EEG studies have 
focused on quantifying the spectral power within fixed bands of fre-
quency ranges— e.g., the average power over 4− 8 Hertz for studying 
theta-band oscillations (Arns et al., 2012; Barry and Clarke, 2009; 
Benninger et al., 1984; Clarke et al., 2001; Cragg et al., 2011; Dustman 
et al., 1999; Gasser et al., 1988a; Matthis et al., 1980; Orekhova et al., 
2006; Segalowitz et al., 2010; Smith, 1938). For example, Clarke et al. 
(2001) examined age-related differences in theta (defined as 2.5–7.5 

Hertz) and alpha (7.5–13.5 Hertz) band in EEG for children ages 8–12 
years, and found a relative decrease in theta-band and increase in 
alpha-band power with age in both frontal and posterior regions. 
Marshall et al. (2002) analyzed longitudinal data from 5 months to 4 
years of age and found that the frequency band with the greatest power 
transitioned from theta to alpha-band around 10 months of age. 
Together, previous research suggests that the power of alpha and theta 
band are critical developmental markers. However, recently improved 
understanding of the nature of neural oscillations provides new tech-
niques to improve on these early studies (Donoghue et al., 2020). 

An accurate description of how neural oscillations develop with age 
demands precision in measuring and interpreting different aspects of the 
oscillation, as neural oscillation is not a one-dimensional dependent 
measure, but contains various measurable characteristics (e.g., fre-
quency, power, phase, spectrum). Each of these characteristics may have 
a different underlying physiology and distinct functional contribution to 
brain function and behavior. Recent methodological developments offer 
analytical tools that can measure these oscillatory components with 
increased precision (Haller et al., 2018). For example, traditional ana-
lyses using canonical frequency bands do not separate a commonly 
observed background activity of the brain—known as the aperiodic 
signal—from the oscillatory (periodic) signal; nor do they estimate the 
peak frequency of the oscillation (Fig. 1A). Consequently, what appears 
as an age-related difference in oscillatory activity might be due to a shift 
in aperiodic slope (Fig. 1B) or intercept (Fig. 1C) of the power spectrum, 
but not changes in the power of an oscillation (Donoghue et al., 2020; 
Haller et al., 2018). Because many prior studies did not account for in-
fluences for the aperiodic signal, it is not clear if these findings reflect 
changes in genuine oscillations, whereases a more parsimonious 

Fig. 1. Power spectrum as an aperiodic signal 
with superimposed periodic signal(s) (A) An 
illustration of the power spectrum as two sepa-
rable signal sources: the aperiodic background 
signal (dashed line), and one or more periodic 
components (dark purple “bump”). Analysis of 
the aperiodic and periodic signals separately 
allows for a more accurate estimate of changes 
in oscillatory activity with age. The canonical 
alpha-band (α) is highlighted in light purple. (B, 
C) Two example participants, one age 4.5 years 
(light purple line) and the other age 15 (dark 
purple line), have different aperiodic slopes (B) 
and offsets (C). The solid grey lines show the 
raw power spectra. The aperiodic signal slope 
was estimated as the exponent of the equation 
in (B) and the offset as the intercept in (C). (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article).   

D. Cellier et al.                                                                                                                                                                                                                                  



Developmental Cognitive Neuroscience 50 (2021) 100969

3

explanation might be an age-related change in features of the aperiodic 
signal (e.g., the shift in greater theta to alpha power might just be a 
change in aperiodic slope). It is therefore critical to separate the aperi-
odic activity from oscillatory activity to accurately estimate the power of 
neural oscillations, as this allows the establishment of the presence or 
absence of an oscillation relative to the aperiodic signal (Donoghue 
et al., 2020); see Fig. 1 for illustration). Adopting these practices can 
derive a more accurate description of the development of neural 
oscillations. 

One cardinal characteristic of oscillatory signals is the expression of a 
prominent peak of oscillatory activity in the power spectrum (Fig. 1A). 
We will hereon define this oscillatory peak as the “dominant oscilla-
tion,” consistent with terminology adopted by the field (Lodder and van 
Putten, 2011; Marcuse et al., 2008). In adult EEG, the dominant oscil-
lation most commonly falls within the alpha-band range of 8− 12 Hz 
(Berger, 1929; Chiang et al., 2011; Klimesch, 1999), but during early 
childhood, the dominant oscillation appears to be within the theta-band 
frequency range (Lodder and van Putten, 2011; Rodríguez-Martínez 
et al., 2017). Alpha and theta oscillations are developmentally signifi-
cant because they have both been shown to be closely related to atten-
tion (Foxe and Snyder, 2011; Fries et al., 2001; Klimesch, 1999) and 
working memory (Roux and Uhlhaas, 2014; Sauseng et al., 2009, 2005). 
These cognitive functions are also known to exhibit significant devel-
opmental improvement from childhood through adolescence (Davidson 
et al., 2006; Luna et al., 2004). 

The goal of the present study is to characterize the age-related dif-
ferences in the dominant oscillation from early childhood to early 
adulthood. To accomplish this goal, we examined eyes-open resting- 
state EEG data from two independent samples with participants aged 
2.95–24 years old. By accounting for the influence of both aperiodic and 
periodic signal, our goals were to first identify when genuine theta and 
alpha oscillations were present during development, second to charac-
terize the developmental trajectories of the peak frequency, relative 
power, and topography of the dominant oscillation, and finally to 
determine developmental changes in features of the aperiodic signal. 

2. Methods 

2.1. Participants 

We examined two independent samples. The first was a sample from 
the School Readiness Study (SRS), an ongoing longitudinal study that 
consisted of children recruited between ages 36 and 63 months from the 
community surrounding the University of Iowa. Children were sched-
uled to return for longitudinal follow-ups with repeated measures in 
approximately 9-month increments. This sample (abbreviated as the SRS 
sample hereafter) includes a total of 41 children (19 females), sixteen 
who entered the study at 36 months of age, nine who entered the study 
at 45 months of age, six who entered at 54 months, and ten who entered 
at 63 months. We re-assessed 22 of these 41 children during a subse-
quent visit 9 months after their initial visit, resulting in 63 total study 
sessions spanning from 2.95 to 6.13 years of age. All study procedures 
were approved by the institutional review board at the University of 
Iowa. 

The second sample was acquired from publicly available data from 
the Child Mind Institute, Multimodal Resource for Studying Information 
Processing in the Developing Brain project (CMI-MIPDB) (Langer et al., 
2017). It consisted of an older range of participants, 8–24 years of age. 
We isolated a subset of 72 participants from the CMI-MIPDB dataset that 
were screened for a wide range of clinical diagnostic criteria and had no 
clinical diagnosis. 

2.2. EEG data preprocessing 

For both samples, resting-state EEG data was collected using a 128- 
channel Hydrocel Geodesic SensorNet EEG system. For the CMI- 

MIPDB sample, resting-state EEG data were collected with alternating 
eyes-open and eyes-closed periods lasting 20 s and 40 s, respectively. 
Each of these blocks were repeated five times, for a total of 300 s of data 
collected. We extracted the eye-open portion of the data for our analysis, 
and eye-closed data were not included. The sampling rate was 500 Hz. 
For the SRS sample, participants were instructed to remain as still and 
quiet as possible while watching child-friendly cartoon video clips on a 
screen, and each resting-state recording lasted for 180 s, recorded at a 
sampling rate of 1000 Hz. Thus, our analyses focused on eye-open data 
from both samples. 

All preprocessing was performed with custom Python 3.7 scripts 
using MNE v0.18.2 (Gramfort et al., 2013). For the SRS sample, each set 
of continuous data were band-pass filtered at 1 and 40 Hz. Noisy 
channels were inspected visually and interpolated using spherical spline 
interpolation (Perrin et al., 1989). Data were re-referenced to the 
average of all of the available 128 channels. Subsequently, epochs were 
hand-inspected and noisy epochs excluded from further analyses. We 
submitted the data to an independent component analysis (ICA) using 
infomax rotation (Lee et al., 1999). This procedure seeks to identify 
components that capture muscle and eye-blink related artifacts, and we 
visually inspected all independent components. Noisy components that 
were likely motion-related were identified based on the presence of 
artifacts around the perimeter of the topographic map, or singular noisy 
channels. Components that were related to blinks and saccades, muscles, 
and heartbeats were excluded as well. Noise components were then 
rejected and removed from the data. A final inspection of the epochs was 
performed after component rejection. An average of 6% of epochs and 
30.3 % of independent components per participant were rejected from 
the SRS sample. 

The CMI-MIPDB dataset was preprocessed using identical steps, with 
the following exceptions. An iterative process of modification was 
necessary due to greater noise in this sample as identified during inde-
pendent component analysis and slight differences in testing procedure. 
Re-referencing was accomplished using an average of the 90 scalp 
electrodes, excluding external/face electrodes. The rationale for this is 
that global re-referencing in this dataset introduced excessive noise from 
facial artifacts and noisy channels. Eyes-open resting state data were 
extracted and the eyes-closed data were discarded. Epochs and inde-
pendent components rejected were 15 % and 41 %, respectively, for the 
CMI-MIPDB dataset. 

Four EEG sessions from the SRS sample were excluded from analysis 
due to an incomplete resting-state EEG file, resulting in a total of 59 
resting-state EEG sessions from 39 individuals. Fifteen CMI-MIPDB 
participants were excluded due to excessive noise identified during 
preprocessing of EEG data, resulting in a total of 57 participants (24 
females, ages 8–24 years old) included. We combined data from the 
CMI-MIPDB and SRS samples into one dataset of 116 unique visits from 
96 individuals, spanning ages 2.95–24 years old. 

2.3. EEG cluster selection 

To address the multiple comparisons problem of independently 
testing each electrode, we restricted our analysis to two a priori clusters 
of electrodes on the scalp. First, a posterior electrode cluster over 
parietal-occipital cortex was selected based on prior research indicating 
that the dominant oscillation of the brain typically originates in parietal- 
occipital cortex (Chiang et al., 2011; Klimesch, 1999; Segalowitz et al., 
2010). Second, we selected an anterior electrode cluster over the 
frontal-midline based on previous research in adults that finds this re-
gion as the location of peak power of theta oscillations (Cavanagh and 
Frank, 2014; Ishii et al., 1999). In the 128-electrode system of Electrical 
Geodesics, Inc., the electrodes in the parietal-midline cluster were POz 
and its surrounding electrodes (E62, E67, E71, E72, E76, and E77), and 
the electrodes in the frontal-midline cluster were Fz and its surrounding 
electrodes (E4, E5, E11, E12, E16, E18, and E19). Because the dominant 
oscillation is known to be more prominent in posterior electrodes during 
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resting-state conditions, we focused our age-related analysis on the 
dominant oscillations in the parietal-midline electrode cluster. Because 
theta oscillations are also commonly observed in frontal-midline elec-
trodes in adults (Cohen and Donner, 2013; Riddle et al., 2020a), we 
included the frontal-midline cluster in an analysis exploring age-related 
differences in topography of the theta oscillation. We hypothesized that 
signal from the parietal-midline cluster would capture age-related 
transition in peak frequency of the dominant oscillation. We also 
compared the frontal-midline cluster to the parietal-midline cluster to 
test the difference in topology of theta oscillations between adults and 
children. 

2.4. Estimating aperiodic signal and periodic oscillations 

Frequency analysis was performed using Welch’s estimation of 
power spectra (Welch, 1967), then averaged across epochs and elec-
trodes within each cluster. The power spectrum was estimated for fre-
quencies 1 through 40 Hz, with a FFT and Welch segment length of 512 
with 45 % overlap to achieve 512 millisecond and 1024 millisecond 
sliding windows, respectively, for both the SRS and CMI-MIPDB sam-
ples. This difference in frequency resolution is a result of the differing 
sampling rates of each dataset and is not large enough to be of 
consequence. 

Electrophysiology recordings of human brain activity consistently 
report a prominent 1/f power distribution, often referred to as “back-
ground noise” (Bédard et al., 2006; Usher et al., 1995). This 1/f-like 
power distribution, or aperiodic signal, captures the phenomenon 
whereby the power at low frequencies is relatively greater. Power is 
progressively decreased in the higher frequencies, resulting in an overall 
negatively sloped power spectrum across a wide range of frequencies (e. 
g., 1–100 Hz). However, the most commonly used time-frequency ana-
lyses method (Stroganova et al., 1998) for characterizing the develop-
ment of neural oscillations is done by averaging power within 
pre-specified frequency bands and comparing the absolute (total) or 
relative (proportional) power of each frequency band between age 
groups (Gmehlin et al., 2011b; Segalowitz et al., 2010; Somsen et al., 
1997). This form of analysis introduces a confound where the frequency 
band is assumed to represent a neural oscillation but in fact contains a 
superposition of periodic and aperiodic signals. Thus, we adopted an 
approach that estimates both aperiodic and periodic signals. 

We used the open-source, Python-based Fitting Oscillations and One- 
Over-F (FOOOF) toolbox (Haller et al., 2018) to estimate both the pe-
riodic and aperiodic signals. We restricted the FOOOF algorithm to four 
oscillatory peaks within the 1–40 Hertz range and constrained the 
minimum peak width to approximately twice the frequency resolution 
(4 Hz for the SRS sample, and 2 Hz in the CMI-MIPBD sample). We 
restricted the number of oscillatory peaks estimated by FOOOF to reduce 
the risk of over overfitting (see Chiang et al. (2011) and Dickinson et al. 
(2018)). The oscillatory peaks were modeled using Gaussian functions, 
Gn, where: 

Gn = h ∗ exp

(
− (F − c)2

2w2

)

With h corresponding to power (referred to as height in Fig. 1A), c 
corresponding to center frequency, w corresponding to the bandwidth 
(2*std), and F as a vector of frequency values of the power spectrum in 
Hertz. 

The aperiodic signal, L, is modeled as: 

L = b – log(Fx)

Where b, the intercept, determines the aperiodic offset and the exponent 
x determines its slope. Hereon, we use the terms slope and offset to refer 
to the exponent and intercept, respectively. The aperiodic signal L is 
algorithmically incorporated with oscillatory “bumps” in the power 
spectrum, modeled as Gaussian curves (Gn): 

P = L +
∑N

n=0
Gn  

Where P is the combination of both the periodic and aperiodic signals. 
The periodic signal(s) are represented here as a sum of N peaks. 

To derive a full estimate of the aperiodic and periodic signals that 
contributed to the power spectrum, the aperiodic signal was first esti-
mated. The estimated aperiodic signal was then removed from the 
power spectrum and the maximum frequency peaks from the residuals 
were identified. If a peak was greater than the noise floor (at least 2 
standard deviations above the residuals), then the peak was labeled as a 
genuine neural oscillation and a Gaussian function was fit around the 
peak frequency. Gaussian peaks that surpassed the noise floor were 
iteratively estimated and removed from the power spectrum until none 
were found or the pre-defined number of periodic signals was reached 
(four). When the iterative Gaussian estimation was complete, Gaussians 
that overlapped with each other or that were too close to the limits of the 
power spectrum were dropped, and the remaining Gaussians were used 
as seeds to re-fit the data to a multi-Gaussian model using a non-linear 
least squares operation, in effect combining them into a finalized “pe-
riodic signal.” Finally, the estimated periodic activity was removed from 
the original power spectrum and the aperiodic component was re-fitted 
on the residuals to achieve a more accurate aperiodic estimate. The final 
outputs of the algorithm included the linear combination of the aperi-
odic and periodic estimations, the exponent and intercept values of the 
aperiodic signal, and the bandwidth, power, and center frequencies of 
the identified oscillatory peaks. Our analysis of aperiodic signal included 
both the slope and offset. Our analysis of neural oscillations used the 
center frequency (c) and power of the dominant oscillation, as well as an 
analysis for the presence or absence of an oscillation within pre-defined 
band ranges. 

2.5. Statistical analysis of the aperiodic signal 

From the preprocessing stages described above, we obtained slope 
and offset estimates for the aperiodic signal of each study session. Our 
goal was to describe age-related differences in these components. To this 
end, slope and offset were entered into separate ordinary least squares 
regression models as the outcome variable, and age as the predictor 
variable. Regressions were performed by including both frontal-midline 
and parietal-midline electrode clusters as a within-participant variable 
to examine its interaction with age. We also ran separate regression 
models to examine the association with age for each electrode cluster. 
We corrected for multiple comparisons using the Bonferroni correction, 
where p-value less than 0.0125 was considered to be statistically sig-
nificant. In order to account for the subset of participants who were 
sampled multiple times in the longitudinal SRS study, and to avoid 
violation of the assumption of independence in multiple regression, we 
ran our least squares regression with a cluster variable (i.e., clustered 
regression) to account for inter-participant dependence. We fit clustered 
regression models using the rms package (Harrell, 2015) in R v3.6.3 
(Team, 2020) that calculates robust standard errors using a robust 
(Huber-White sandwich) estimator of the covariance matrix (Huber, 
1967; White, 1980). Sandwich estimators are widely used to account for 
data dependency in regression models (for an example using sandwich 
estimators in the context of longitudinal neuroimaging, see Guillaume 
et al. (2014)). 

2.6. Statistical analysis of periodic oscillations 

Independently of the aperiodic signal, the center frequency of the 
dominant oscillation (i.e., the genuine oscillation of highest power) in 
the 4–12 Hertz range was selected for each participant who showed an 
oscillation in this range. To determine the age-related change of the peak 
frequency and the oscillatory power of the dominant oscillation, both of 
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these estimates were entered into separate ordinary least squares 
regression models as the outcome variable, with age as the predictor 
variable. This regression included a cluster variable to account for 
repeated measurements for the same participant in the SRS sample. 

To determine whether there was an age-related transition in the 
dominant oscillation from theta to alpha frequency band, every genuine 
neural oscillation in the frequency range from 4 to 12 Hz was included in 
the analysis (N = 78). We fit a logistic regression sigmoid function with 
the age of the participant as the predictor variable, and the frequency 
band (theta or alpha) as the categorical outcome variable. The estimated 
r-value was derived from the McFadden pseudo-R squared values 
calculated by the maximum likelihood estimation. From the fit of the 
logistic regression, we derived an inflection point in age where the 
likelihood that a participant possessed a theta or alpha oscillation 
equaled 50 %. We used a significance threshold of p < 0.05 for this 
analysis. 

It is also possible that a participant could show no oscillatory peaks at 
all within the theta or alpha range. Thus, we investigated a difference in 
the presence or absence of theta and alpha oscillations between 
“younger,” versus “older” age groups (defined by a median split by age 
at 6.12 years). We then performed a chi-square test to test whether the 
observed number of genuine oscillations in a particular band (theta or 
alpha) significantly differed between age groups. We corrected for 
multiple comparisons using the Bonferroni method: we set the signifi-
cance threshold at p < 0.025. 

Finally, we investigated whether the dominant oscillation in younger 
and older participants displayed a relationship with age within that age 
group and frequency band. To run this analysis, we had to define an 
inflection point between theta and alpha oscillations in a data-driven 
way. Participants were split into two groups based off the data-driven 
age inflection point from the previous analysis separating ‘young’ and 
‘old,’ and a logistic regression was run with peak frequency of the 
dominant oscillation as the predictor variable, with membership to the 
‘old’ versus ‘young’ age group as the outcome variable. Then, we used 
ordinary least squares regression to correlate the peak frequency and 
power of the dominant theta oscillation with age in younger participants 
and peak frequency and power of the dominant alpha oscillation with 
age in older participants. We corrected for multiple comparisons using 
the Bonferroni method: we set the significance threshold at p < 0.025. 

2.7. Statistical analysis of frontal-midline theta oscillations 

We found that many younger participants exhibited a dominant 
oscillation in the theta frequency band. We suspected that the dominant 
oscillation in the theta band in a young participant would be found in 
posterior electrodes and that this was distinct from the often reported 
frontal-midline theta oscillation in adults performing cognitive control 
tasks (Cavanagh and Frank, 2014), and rather is more functionally 
similar to posterior alpha-band activity in adults (Orekhova et al., 2001; 
Saby and Marshall, 2012; Stroganova et al., 1999). If this were the case, 
then the presence of theta oscillations in older participants would be 
greater in the frontal-midline electrode cluster than in the 
parietal-midline electrode cluster. To probe this question of the differ-
ence in topography of peak theta power with age, we performed a lo-
gistic regression with age as the predictor variable and the cluster 
location (parietal-midline or frontal-midline) with greatest peak theta 
power as the outcome variable. The reported r-value was derived from 
the McFadden pseudo-R squared values calculated by the maximum 
likelihood estimation. From the fit of the logistic regression, we derived 
an inflection point in age where the likelihood that theta power of a 
genuine oscillation was greater in frontal-midline than parietal-midline 
electrodes was 50 %. We set a significance threshold for this regression 
analysis at p < 0.05. 

3. Results 

Using two independent samples with eyes-open resting-state EEG 
from 116 participants age 2.95–24 years old, we investigated the rela-
tionship between age and features of the aperiodic signal (slope and 
offset), between age and features of the dominant neural oscillation 
(peak frequency and power). We investigated the development of the 
frontal-midline theta oscillation as distinct from a dominant oscillation 
in the theta-band in posterior electrodes in early childhood. 

3.1. Aperiodic slope and offset 

The aperiodic slope is the slope of the aperiodic signal of the power 
spectra after removal of “bumps” of neural oscillations (Fig. 1B). When 
the distribution of power is shifted towards higher frequencies, then the 
aperiodic offset is decreased (Fig. 1C). We performed regression ana-
lyses including age as the independent variable and the aperiodic slope 
and offset as the dependent variables. We found that in parietal-midline 
electrodes, age was negatively associated with both the slope (β =
-0.0097, t(114) = -3.26, R2 = 0.069, p = 0.0015) and the offset (β =
-0.0999, t(114) = -9.94, R2 = 0.554, p < 0.0001; Fig. 2A–D). For the 
frontal-midline electrode cluster, we found a significant negative asso-
ciation between age and offset (β = -0.094, t(114) = -8.93, R2 = 0.530, 
p < 0.0001), but not between age and slope (β = -0.007, t(114) = -1.83, 
R2 = 0.025, p = 0.07). We then examined the interaction effects between 
electrode clusters (frontal-midline versus parietal-midline) and age on 
slope and offset. We found no significant age by cluster interaction for 
slope (β = -0.0026, t(228) = -0.76, p = 0.45) and offset (β = -0.006, t 
(228) = -1.18, p = 0.24). Thus, as age increased, the aperiodic signal 
flattened in slope and decreased in offset, representing a shift towards 
more power in higher relative to lower frequencies. 

3.2. Age-related change in dominant oscillations 

Previous literature (using canonical time-frequency analyses) 
showed that theta-band power decreased with age while the faster 
alpha-band power increased with age (Segalowitz et al., 2010), and a 
few studies found that the peak frequency of the alpha oscillation in-
creases during development (Chiang et al., 2011; Gmehlin et al., 2011b). 
We examined whether the aperiodic-corrected posterior dominant 
oscillatory peak (defined for 4–12 Hertz) exhibited signs of age-related 
differences. In a linear regression with dominant peak frequency as 
the dependent variable, we found a significant interaction between age 
and electrode cluster (β = 0.073, t(145) = 2.32, p = 0.02). This suggests 
that the association between age and peak frequency differed between 
frontal-midline versus parietal-midline electrodes. Further regression 
analysis revealed that peak frequency was significantly positively asso-
ciated with age (β = 0.216, t(76) = 9.32, R2 = 0.49, p < 0.0001) in the 
parietal-midline cluster (Fig. 3A). This relationship was stronger than 
the relationship between age and peak frequency in the frontal-midline 
cluster (β = 0.139, t(69) = 4.28, R2 = 0.20, p < 0.0001; Fig. S2A). When 
including power of the dominant oscillation as the dependent variable in 
the regression model, we did not find a significant interaction between 
electrode cluster and age (β = 0.0049, t(145) = 1.24, p = 0.22). Addi-
tional analysis did not find the peak power to change with age in the 
parietal-midline cluster (β = 0.0112, t(76) = 1.95, R2 = 0.06, p = 0.055; 
Fig. 3B) or the frontal-midline cluster (β = 0.006, t(69) = 1.32, R2 =

0.046, p = 0.19; Fig. S2B). Thus, peak frequency of the dominant 
oscillation, particularly in the parietal-midline, increased as a function 
of age within the low-frequency range from 4 to 12 Hertz. 

3.3. Theta-alpha transition occurs in early childhood 

An advantage conferred by aperiodic correction is the ability to 
examine whether oscillations within a given frequency band are present 
or absent. Given the age-related shift in the frequency of individual 
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dominant oscillations, we further hypothesized a transition in the 
overall presence of oscillations from theta to alpha frequency range in 
early childhood (Fig. 4A). 78 participants showed genuine (aperiodic- 
corrected) neural oscillations in the theta or alpha range (Fig. 4B). From 
this subset, 31 % of participants had only theta peaks, 64 % had only 
alpha peaks, and 5% had both theta and alpha peaks. We selected the 
parietal-midline cluster for this analysis, because the parietal-midline 
cluster displayed a stronger association between age and the dominant 
peak frequency relative to the frontal-midline cluster (Results 3.2) and 
based on findings from previous work suggesting that the dominant 
oscillatory signature is primarily located in posterior cortices (Klimesch, 
1999), including in childhood through to adulthood (Chiang et al., 
2011). From our logistic regression analysis, we found a significant 

age-related transition from theta to alpha oscillations present in the 
parietal-midline (r(81) = 0.678, p < 0.0001, logit coefficient = 0.5095) 
(Fig. 4B). The inflection point of transition was at 7.19 years of age. 
Post-hoc chi-square tests for the younger and older participants (median 
split) confirm that there was a greater presence of theta oscillations in 
younger participants (younger than 7.19 years; χ2 = 15.25, p < 0.0001), 
and a greater presence of alpha in older participants (older than 7.19 
years; χ2 = 73.31, p < 0.0001). These findings indicate that the ca-
nonical alpha band (8− 12 Hertz) in posterior electrodes in adults may 
not emerge until around age 7. 

Given that the age inflection of 7.19 years fell within the age gap 
between our two datasets (the oldest participant in the SRS sample was 
6.13 years old, while the youngest participant in the CMI-MIPDB dataset 

Fig. 2. Aperiodic signal flattens with age in 
early childhood (A) The aperiodic signal from 
the parietal-midline is depicted for all partici-
pants with the intercept anchored to a single 
point at 20 Hz to visualize individual differ-
ences in slope varying with age. Younger par-
ticipants (light colors) have a steeper aperiodic 
signal than older participants (dark colors). 
Insert depicts the parietal-midline electrode 
cluster for all data in this figure. (B) The 
aperiodic signal is depicted for all participants 
to illustrate the difference in the aperiodic 
offset. Younger participants have greater in-
tercepts (offsets) than older participants. (C) 
Aperiodic slope displayed a significant inverse 
relationship with age. (D) Aperiodic offset also 
displayed a significant inverse relationship with 
age. As participants increased in age, the slope 
and offset of the aperiodic signal decreased. ** 
p < 0.005, *** p < 0.0005. Grey area is 95 % 
confidence interval.   

Fig. 3. The frequency and power of the domi-
nant oscillation increases with age (A) The peak 
frequency of the dominant oscillation between 
4-12 Hz is displayed in all participants who 
exhibited an oscillation. The peak frequency of 
the dominant oscillation from the parietal- 
midline electrode cluster (insert) increased in 
frequency with increasing age. (B) Power of the 
posterior dominant oscillation trended posi-
tively with age. Altogether, these results suggest 
a shifting of the dominant posterior oscillation 
from slower theta (4-8 Hz) to faster alpha-range 
(8-12 Hz) peaks. *** p < 0.0001 ~ p < 0.1 Grey 
area is 95 % confidence interval.   
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was 8 years old), we ran a control analysis modeling dataset membership 
with an additional grouping variable. As age was entirely confounded 
with the two datasets, the age-related transition in the presence of theta 
and alpha oscillations became non-significant (logit coefficient = 0.216, 
p = 0.187), albeit in the same direction. We address this caveat in the 
discussion section. 

3.4. Peak frequency of the dominant oscillation increases with age 

After establishing the development of dominant oscillation from 
theta-band to alpha-band frequency peaks, we investigated whether the 
peak frequency of the dominant oscillation in the parietal-midline 
electrodes linearly increased with age. We correlated the peak fre-
quency (Fig. 5A) of theta and alpha dominant oscillations (Fig. 5B) with 
age (Fig. 5C). If a positive linear relationship existed for peak theta 
frequency in young participants and for peak alpha frequency in old 
participants, then this suggested a smooth linear transition in dominant 
frequency from theta to alpha oscillation between ages 3 and 24. We 
found a significant positive relationship between peak alpha frequency 
and age in participants older than 7.19 years (r(45) = 0.35, p = 0.017; 
Fig. 5D), but no relationships between peak theta frequency and age in 
participants younger than 7.19 (r(22) = 0.011, p = 0.96; Fig. 5E). This 
finding suggests that once the alpha oscillation emerges as the dominant 
oscillation, then there is a linear increase in its peak frequency with age 
between 7 and 24 years old. In contrast, the theta frequency dominant 
oscillation may be categorically distinct in early childhood as it does not 
change with age between 3 and 7 years old. 

As a control analysis to test for the specificity of these effects, we ran 
an identical analysis but with the power (Fig. 6A–B) of the dominant 
oscillations. We found no significant relationship between alpha power 
and age in older participants (r(45) = 0.089, p = 0.558; Fig. 6C) nor 
between theta power and age in young participants (r(21) = -0.29, 
p = 0.0797; Fig. 6D). These findings suggest that the peak frequency of 
the dominant oscillation changes with age, while the peak power ex-
hibits a non-significant relationship with age. 

3.5. Frontal-midline theta oscillations emerge with age 

We observed the presence of dominant oscillations in the theta fre-
quency range in the young participants. We investigated whether the 
dominant theta oscillations in early childhood originated from posterior 
electrodes and were distinct from frontal-midline theta oscillations 
found in adulthood. This is motivated by findings indicating that pos-
terior theta oscillations found in infants shared functional characteristics 
with alpha oscillations reported in adults (Gasser et al., 1988a; Saby and 
Marshall, 2012). Due to volume conduction, neural oscillations recorded 
in posterior electrodes may reflect the same source driving oscillations 
in anterior electrodes. We reasoned that the electrode cluster that 

showed greater theta power likely was closer to the true underlying 
source of the theta oscillations. Therefore, we examined whether theta 
power was strongest in the frontal-midline or the parietal-midline 
electrodes (Fig. 7B). We expected that for older participants, anterior 
electrodes would show stronger theta power. In contrast, younger par-
ticipants would show stronger theta power in the posterior electrodes. 
We ran a logistic regression for the site with the strongest theta oscil-
lations (frontal-midline or parietal-midline) as a function of age 
(Fig. 7C). We found a significant age-related transition of peak theta 
power from posterior to anterior electrodes (r(44) = 0.32, p = 0.04). The 
topographic distribution of older participants with greater theta power 
in anterior electrodes was clustered around the frontal-midline 
(Fig. 7D), whereas younger participants with greater theta in posterior 
electrodes displayed theta oscillations spreading into electrodes over 
occipital cortex. This finding suggests that frontal-midline theta emerges 
in development and is distinct from the dominant posterior theta os-
cillations of early childhood. 

4. Discussion 

In this study, we aimed to investigate the development of intrinsic 
neural oscillations from early childhood to adulthood (years 3–24), 
focusing on characterizing the first prominent oscillatory peak of the 
spectrum, also known as the “dominant oscillation.” To improve the 
precision in detecting the dominant oscillation, we separated several 
different components of intrinsic neural activity: slope and offset of the 
aperiodic signal, peak frequency and power of the periodic oscillation 
(s). We then examined the relationship of these components with age. 
For the aperiodic signal, we found that both the slope and offset 
decreased with age. For the dominant oscillation, we found that the peak 
frequency, but not the power, of the dominant oscillation increased with 
age. Specifically, as age increased, the dominant oscillation increased 
from theta (4− 8 Hz) to alpha (8− 12 Hz) frequency range. The associ-
ation between age and peak frequency was stronger in the parietal- 
midline cluster than in the frontal-midline cluster, which is consistent 
with the notion that the dominant oscillation is more strongly expressed 
in posterior cortices (Berger, 1929; Lodder and van Putten, 2011). 
Notably, we found two distinct developmental trajectories for theta 
versus alpha dominant oscillations; there was no age-related increase in 
the peak frequency of theta-band dominant oscillations in younger 
participants (age 3–7), but the peak frequency of alpha-band dominant 
oscillations in older participants (ages 7–24) did increase with age. 
Given that age-related differences in the aperiodic offset were found in 
both the frontal-midline and parietal-midline clusters, the aperiodic 
signal may be a global phenomenon. By contrast, the age-related tran-
sition in the dominant frequency was local to the parietal-midline cluster 
suggesting the development of a specific signal generator. Finally, we 
found that while participants in early childhood exhibited a theta 

Fig. 4. Theta to alpha oscillation transition 
with age (A) Two hypothetical participants with 
periodic signals modeled as Gaussian curves 
above the aperiodic signal. (B) Logistic regres-
sion of the age of the participant from which a 
genuine theta or alpha oscillation (categorical 
variable) was found. The 50 % probability mark 
(dashed line) occurs at approximately 7.19 
years of age. Dots represent a genuine alpha or 
theta oscillation and the age of the participant. 
Dots are jittered along the y-axis for illustration.   
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frequency dominant oscillation that was most pronounced in 
parietal-midline electrodes, older participants exhibited theta oscilla-
tions that were more pronounced in the frontal-midline. 

Recent studies suggest that human neurophysiology signals, such as 
those recorded with EEG, should be interpreted as a linear combination 
of two distinct types of signals: periodic and aperiodic (Donoghue et al., 

2020; Haller et al., 2018). The aperiodic signal is also known as the 1/f 
phenomenon, where the power is inversely proportional to the fre-
quency of the signal. For example, for a given EEG power spectrum 
plotted from 1 to 100 Hz, we would observe that the power at low fre-
quencies (1 Hz) is higher than that at high frequencies (100 Hz). Studies 
demonstrated that the power spectrum of human EEG signals exhibits a 

Fig. 5. Analysis of peak theta and alpha frequency in younger and older participants (A) Two example participants with peak frequency of the dominant oscillation 
highlighted by a colored circle. (B) The power spectra correcting for the slope of the aperiodic signal for all participants is depicted with peak frequency in the theta- 
band (4-8 Hz) and alpha-band (8-12 Hz) plotted as dots. Younger (light purple) participants tend to have an overall lower alpha peak frequency than older (dark 
purple) participants. (C) Dominant frequency plotted with age. Logistic regression determined the age and frequency inflection points separating old and young 
participants and theta and alpha oscillations (dashed lines). Light purple square depicts theta frequency dominant oscillations in the young participants and dark 
purple square depicts alpha frequency dominant oscillation in the old participants. (D) Linear regression of age to individual alpha frequency in old participants and 
(E) to individual theta frequency in young participants. * p < 0.05. Grey area is 95 % confidence interval. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article). 
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negative slope, where the steepness of the slope, as well as its offset, vary 
between individuals (Ouyang et al., 2020; Voytek et al., 2015) and brain 
regions (Podvalny et al., 2015). Critically, neural oscillations should be 
more parsimoniously defined as periodic signals expressing power am-
plitudes stronger than the background aperiodic signal (Fig. 1A). 
Conflation of aperiodic and periodic signals could be problematic for 
two reasons. First, the spectral power is dominated by the aperiodic, 
non-oscillatory signal (Bullock et al., 2003). Second, Haller et al. (2018) 
illustrated the potential drawback of not accounting for the aperiodic 
when estimating the power of oscillations, demonstrating that shifts in 
the offset or changes in the slope of the aperiodic signal can spuriously 
change total band-limited power without changes in the periodic oscil-
lation (Fig. 1B–C). This is a critical issue when comparing oscillatory 
signals between individuals or age groups, because what appears to be 
individual differences in periodic oscillations could be driven by unac-
counted changes of the aperiodic slope and offset. Aperiodic correction 
of the power spectrum can detect the presence or absence of periodic 
oscillatory peaks independent of the aperiodic component, and improve 
the precision in characterizing the development of neural oscillations 
(Donoghue et al., 2020). 

We found that both the aperiodic slope and offset decreased with 
age. An age-related decrease in aperiodic slope indicates that the 1/f 
spectrum becomes less steep with age, and an age-related decrease in 
offset indicates that the overall spectral power decreases with age. Two 
studies that examined the aperiodic component of human EEG data have 
also found age related decrease in the aperiodic slope during human 
lifespan (He et al., 2019; Schaworonkow and Voytek, 2020b; Tran et al., 
2020; Voytek et al., 2015). Voytek et al. (2015) found that the aperiodic 
slope is significantly flatter in older adults (60–70 years old) than in 
younger adults (20–30 years old), while He et al. (2019) found the 
aperiodic slope to be flatter in adults (23–58 years old) than children 
(ages 5.5–10.5 years). Schaworonkow and Voytek (2020a) show a flat-
tening of the aperiodic signal within the first seven months of life. Our 

finding suggests that this developmental decrease in the aperiodic slope 
continues between infancy and early adulthood. 

The precise neural mechanism that alters the aperiodic slope of 
intrinsic neural activity remains an active area of research. Critically, 
active stimuli processing flattens the slope (He et al., 2010; Podvalny 
et al., 2015), and a flattened slope is correlated with cognitive decline 
(Tran et al., 2020; Voytek et al., 2015). The few existing studies suggest 
that a shift in aperiodic slope is indicative of a shift in the ratio of 
excitation and inhibition (E-I balance) of a neural population. Evidence 
for this hypothesis comes from propofol-induced anesthesia of macaque 
monkeys, where propofol, acting on GABAA inhibitory activity, 
increased the “I” in the E:I balance, causing the aperiodic signal to 
steepen (Gao et al., 2017). E-I balance is mediated by local and 
long-range circuits composed in part by inhibitory GABAergic and 
excitatory glutamatergic neurons (Tatti et al., 2017), and is aberrant in 
human and animal models of neurological disorders such as autism 
spectrum disorder (Hegarty et al., 2018; Rubenstein and Merzenich, 
2003; Sohal and Rubenstein, 2019; Yizhar et al., 2011), schizophrenia 
(Lisman, 2012; Uhlhaas and Singer, 2011), and epilepsy (Shao et al., 
2019). Recent studies have examined the aperiodic slope in schizo-
phrenia and ADHD and demonstrated systematically steeper aperiodic 
signals in clinical populations compared to healthy controls (Molina 
et al., 2020; Robertson et al., 2019). Developmental decreases in the 
aperiodic slope may therefore indicate maturation of the E-I balance. 
Furthermore, the aperiodic offset may reflect overall neuronal popula-
tion firing rates and scale-free brain activity that is dissociable from 
ongoing oscillations (He, 2014; Ray and Maunsell, 2011). The offset is 
likely largely reflected in measurements of oscillatory activity (Donog-
hue et al., 2020), and as such we are left to speculate as to whether the 
neural origins thought to underlie changes in overall EEG power might 
lend explanatory power to changes in offset with age. For example, 
Whitford et al. (2007) investigated age-related differences in brain 
structure and resting-state electrophysiology using MRI and EEG, 

Fig. 6. Analysis of peak theta and alpha power in 
younger and older participants (A) Two hypo-
thetical participants with oscillations that have 
a similar power prior to aperiodic signal 
correction. Note that without aperiodic signal 
correction, the power of the two oscillations in 
the hypothetical participants appears to be 
similar. After aperiodic signal correction, the 
peaks differ in power. (B) Aperiodic signal cor-
rected power spectra for all participants. Dots 
indicate the peak frequency of each oscillations. 
(C) Linear regression of age to individual alpha 
power in younger participants and (D) to indi-
vidual theta power in older participants. * 
p < 0.05. Grey area is 95 % confidence interval.   
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respectively, in 138 individuals aged 10–30 years. They found that 
decreasing grey matter volume with age, hypothesized to reflect syn-
aptic pruning, was paralleled by decreases in EEG power across 
slow-range frequency bands. 

Traditionally, relative band power is a measure of absolute power 
(power summed over a frequency range) divided by the absolute power 
of all other frequencies outside that band (Segalowitz et al., 2010). 
While absolute power likely largely reflects fluctuations in the aperiodic 
signal, particularly those of the offset, relative power aims to get more 
directly at nuances between various frequencies. Our finding has im-
plications for interpreting prior studies that reported developmental 
differences in relative and absolute power of the frequency spectrum 
(Barry and Clarke, 2009; Bell, 2002; Buchsbaum et al., 1992; Clarke 
et al., 2001; Cragg et al., 2011; Dustman et al., 1999; Gasser et al., 
1988b; Gmehlin et al., 2011a; Klimesch, 1999; Matoušek and Petersén, 
1973; Orekhova et al., 1999, 2001; Orekhova et al., 2006; Paulino et al., 
2011; Schäfer et al., 2014; Segalowitz et al., 2010; Somsen et al., 1997; 
Stroganova et al., 1999, 1998; Uhlhaas et al., 2010, 2009; Uhlhaas and 
Singer, 2011; Whitford et al., 2007; Yordanova and Kolev, 1997). The 
method commonly adopted in previous studies, however, still in-
corporates the aperiodic signal into its calculation of oscillatory power 
rather than separating it from the periodic estimate. For example, 
Dustman et al. (1999) examined resting-state EEG data from healthy 
males aged 4–90 years old and found that, while relative theta-band 
power exhibited a lifelong decrease in power until old age, relative 

alpha-band power began an increase at age 6, peaked at around age 24, 
and then steadily declined. In addition, several studies have investigated 
the potential of using the ratio of theta-to-beta power as a biomarker for 
neural development and psychopathology (Arns et al., 2012). However, 
elevated theta-band power and attenuated beta-band power in ADHD 
might be more parsimoniously explained by changes in the aperiodic 
slope (Robertson et al., 2019). 

After accounting for the aperiodic signal, we found that the peak 
frequency of the dominant oscillation significantly increased with age. 
Specifically, we found that participants younger than 7 years tend to 
exhibit a dominant oscillation in the slower theta frequency range 
(4–8 Hz), and that peak theta frequency has no significant relationship 
with age. After age 7, the peak frequency of the dominant oscillation 
shifted to the faster alpha-band (8–12 Hz), and the peak alpha frequency 
continuously increased with age. Intrinsic, alpha-band neural oscilla-
tions have been shown to be modulated by alertness and attention 
(Cantero et al., 1999; Pfurtscheller et al., 1996; Romei et al., 2008). Prior 
EEG studies demonstrated that in toddlers, neural oscillations over-
lapping with the adult theta range of 4–8 Hertz in posterior electrodes 
can also be modulated by alertness, attention, and inhibitory control 
(Tatiana A Stroganova et al., 1999; Whedon et al., 2020). This suggests 
that theta-band dominant oscillations during early childhood may be 
functionally similar to alpha neural oscillations (8− 12 Hz) observed in 
adults (Cuevas et al., 2012). Other studies suggest that based on its 
functional properties, the equivalent of the theta oscillation could 

Fig. 7. Emergence of the frontal-midline theta 
oscillation in development (A) Example partici-
pant (age 10) who demonstrated alpha and 
theta oscillations in frontal-midline and 
parietal-midline clusters. Theta power was 
greater in the frontal-midline (red trace), 
whereas alpha power was greater in the 
parietal-midline (blue trace). (B) Frontal- 
midline power spectra for all participants with 
the slope of the aperiodic signal removed. Dots 
indicate the peak frequency for each partici-
pant. We observed a number of anterior theta 
peaks in younger participants and anterior 
alpha peaks in older participants, possibly due 
to the confounding influence of volume con-
duction. We therefore conducted our analyses 
on peak theta power, since this is likely to 
reflect greater proximity to the true origin of 
resting theta power in children versus adults. 
(C) Logistic regression of the site of aperiodic 
signal corrected peak theta power with age. 
Spatially-normalized (z-scored) theta topog-
raphy averaged over participants with greater 
power in anterior (D) and posterior (E) elec-
trodes. (Insert in C) Difference in z-scored theta 
power between participants with greater ante-
rior versus posterior power. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article).   
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overlap with the lower delta-range (2–4 Hertz) during infancy (Ore-
khova et al., 1999, 2006). These studies suggest that there may be a 
general pattern of age-related frequency shift for both theta and alpha 
oscillations (Stroganova and Orekhova, 2007), and researchers often 
define 6–8 Hertz oscillations as “infant alpha” (Orekhova et al., 1999, 
2001, 2006; Stroganova et al., 1999; Stroganova et al., 1998). In the 
current study, we examined this developmental pattern with a 
data-driven approach, without defining a priori frequency bands. Spe-
cifically, we defined peak frequency of neural oscillations by computing 
the aperiodic signal correction of the power spectrum. This approach 
avoids conflating developmental change in genuine neural oscillation 
with developmental changes in the aperiodic signal, which we have also 
identified. Relatively few studies have also leveraged a methodology 
resembling aperiodic correction, but they demonstrated the same 
pattern (Chiang et al., 2011; Schaworonkow and Voytek, 2020b; 
Tröndle et al., 2020). In conclusion, our results suggest that during 
childhood and adolescence development, slower theta oscillations in 
posterior cortices first transition into alpha oscillations, and the peak 
frequency continues to increase after the transition. 

The development of intrinsic, dominant alpha neural oscillations 
could be related to age-related development in various cognitive func-
tions. In adults, individual differences in the peak alpha oscillation 
frequency, also known as the individual alpha frequency (IAF), have 
been shown to correlate with individual differences in intelligence and 
cognitive performance, such as on a mental rotation task (Angelakis 
et al., 2007; Grandy et al., 2013; Klimesch et al., 2003; Mierau et al., 
2017). In children, IAF has been shown to increase with age (Marcuse 
et al., 2008) and correlate with sensorimotor skills in ages 3–6 years 
(Mierau et al., 2016). IAF has also been studied in a population of 11–70 
year-olds, in which it was found to be positively correlated with per-
formance on the reverse digit span task (Richard Clark et al., 2004). The 
alpha component of auditory evoked potentials during an oddball task 
has also been shown to increase in amplitude and post-stimulus phase 
locking between the ages of 6 and 10 years (Yordanova and Kolev, 
1997). Another study found that, in comparison of visual evoked po-
tentials between children aged and adults, the delta and theta, but not 
the alpha, component of the evoked potential were reliably found in 
children. In adults, alpha oscillations have been implicated in wide 
range of cognitive functions (Klimesch, 1999), for example selective 
attention (Foxe and Snyder, 2011; Haegens et al., 2011; Jensen and 
Mazaheri, 2010; Wolfgang Klimesch et al., 2007), working memory 
(Riddle et al., 2020b; Sauseng et al., 2009), and distractor inhibition 
(Bonnefond and Jensen, 2013). Whether peak alpha frequency is 
correlated with these functions, and therefore could serve as a matura-
tional index for neurocognitive development, remains an open question. 

We found that the theta dominant oscillation (4− 8 Hz) transitioned 
into the alpha-band frequency range (8− 12 Hz) around 7.19 years. Our 
findings are consistent with previous research that finds functional 
similarity between theta oscillations (or “infant alpha”) in infants and 
alpha oscillations in adults. For example, a study of one year old infants 
found that when using a blocked design alternating between periods of 
attending to a person blowing bubbles and an eyes-open baseline, 
oscillatory power in the theta-band (5.2–6.9 Hz) is lower during the 
attending condition (Stroganova et al., 1999). This finding is similar to 
the well-replicated phenomenon that cognitive tasks requiring active 
visual attention decrease alpha amplitude in adults (Klimesch, 2012). 
Thus, theta-band activity observed during infancy may be functionally 
similar to alpha band activity observed in adults, and some described 
theta oscillation during infancy as “infant alpha”. However, because we 
did not manipulate attention and alertness in the current study, we are 
not able to definitely determine whether the theta activity (or “infant 
alpha”) we observed in early childhood is functionally similar to alpha 
activity in adults. Future studies should address this question while 
correcting for the aperiodic signal. 

It is important to acknowledge that this age inflection point of 7.19 
years old roughly corresponds to the age difference between the two 

samples. Therefore, we cannot rule out the possibility that age-related 
differences in theta versus alpha dominant oscillations may be 
explained by systematic differences between the SRS and CMI studies (e. 
g. different data collection site and procedure). One notable distinction 
between the data collection procedures between datasets is that younger 
participants in the SRS dataset collected eyes-open resting-state during 
restful fixation on a video, whereas the CMI-MIPDB dataset collected 
eyes-open resting state during restful fixation on a central point (Langer 
et al., 2017). In order to further evaluate how these differences in 
resting-state data collection procedures could potentially affect oscilla-
tions between 4 and 12 Hz, we must consider previous investigations on 
differences in neural activity between the resting-state and passive video 
watching. 

Resting-state studies are often conducted with the goal of investi-
gating spontaneous, unconstrained neural activity that evolves over an 
extended time period, usually several minutes (Lee et al., 2013; van den 
Heuvel and Hulshoff Pol, 2010). This activity is presumed to capture 
trait-like patterns of brain activity that are not constrained by a specific 
cognitive state (Tavor et al., 2016). In research on young children, the 
use of video watching to promote unconstrained, spontaneous activity is 
a common practice due to the practical concerns surrounding acquiring 
artifact-free data in young children (Bell and Cuevas, 2012; Uddin et al., 
2010). Specifically, some studies have used video-watching to collect 
baseline estimates of functional connectivity (Sonkusare et al., 2019). 
This is particularly advantageous because video watching has been 
shown to reduce motion-induced artifacts and to minimize drowsiness 
(Vandewouw et al., 2021), two known potential confounds when using a 
fixation rest. These considerations are particularly crucial in pediatric, 
geriatric, or otherwise difficult-to-study clinical populations who have 
trouble remaining still during EEG or fMRI experiments (Yerys et al., 
2009). In addition to practical considerations, we need to empirically 
understand how watching a video versus a fixation point differentially 
influence unconstrained, spontaneous brain activity. In short, some 
studies suggest that these states are comparable, while others have 
found slight differences in oscillatory power. For example, one study 
found that video watching can evoke functional connectivity patterns 
that closely resemble resting-state networks identified using fMRI 
(Vanderwal et al., 2015). This suggests that trait-level brain activity is 
conserved across cognitive states. Recently, a different study found that 
among typically and atypically developing participants, low-arousal 
videos evoked elevated 4–7 Hertz power and decreased 7–12 Hertz 
power when compared to a fixation condition (Vandewouw et al., 
2021). While this finding suggests movie watching and fixation-based 
rest may have different effects on theta and alpha power, it is impor-
tant to point out that we did not find age-related differences in power, 
but only in the peak frequency. Whether movie-watching versus fixation 
rest differentially modulate the dominant peak frequency needs to be 
addressed by future research. 

Another source of systematic difference between the datasets could 
give rise to saccade-related, motion-related, or muscle-related noise 
artifacts. One study quantified potential artifacts induced by eye- 
movements during video-watching in children, and found that theta- 
band power was higher in artifact-corrupted data (McEvoy et al., 
2015). Given that we removed ocular artifacts with ICA and that our 
analysis was focused on posterior theta signal, it seems unlikely that our 
results could be explained by ocular artifacts. Furthermore, we con-
ducted topographic analysis of theta power and found that, in adults, 
frontal-midline theta was clustered around Fz and FCz, distinct from 
anterior sites that would be more indicative of ocular-artifacts (e.g. Fpz 
and AFz). Motion-related artifacts are most often manifested as 
low-frequency power (< 2 Hz) around the edge of the electrode 
montage. To address motion-related artifacts, large signal transients 
were removed from our analyses, and we used ICA to remove compo-
nents with edge artifacts that were indicative of motion-related signals. 
In regards to muscle-related artifacts, these artifacts are manifested 
primarily around temporal electrodes close to the jaw or in lateral 
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occipital electrodes near the neck, and most often found in the 
beta-frequency range (15− 30 Hz). Our ICA rejection was designed to 
remove these signals, and our analyses did not focus on beta frequency 
oscillations. Thus, it is unlikely that ocular, motion, or muscle artifacts 
can explain our findings. 

An additional factor that we need to consider is the potential impact 
of combining data collected from different data collection designs. The 
SRS is a longitudinal study, whereas the CMI-MIPDB is a cross-sectional 
study. A longitudinal design yields non-independent observations (i.e., 
multiple observations from the same person over time), whereas a cross- 
sectional design, in theory, yields independent observations. Ideally, a 
dataset would assess the same individual multiple times over a long span 
of their life to capture with maximal granularity age-related changes in 
the resting-state electrophysiological profile from childhood through 
adulthood. What may appear as developmental change in a cross- 
sectional design could reflect cohort effects (i.e., effects specific to 
people of a given birth year due to their shared experiences) or sys-
tematic variation in sampling different age groups (Kraemer et al., 
2000). However, longitudinal designs can also be susceptible to cohort 
effects (Zelinski et al., 2009) and the confounds of repeated measures 
(Baltes, 1968), whereby practice effects or a child’s general familiarity 
with methodological procedures result in differences between sessions 
that are not strictly related to development over age. Thus, data from 
longitudinal and cross-sectional designs may not be fully comparable. 
When we combined the SRS and CMI datasets, the majority of study 
participants in the SRS dataset were only sampled once, and were 
sampled at regularly spaced age intervals. This feature should minimize 
practice and time-of-measurement effects and thus make the two data-
sets more comparable. In addition, we performed nearly identical data 
processing steps for all participants, which further facilitates our ability 
to pool participants from the two datasets. 

The dominant theta oscillation in posterior electrodes during early 
childhood is likely functionally distinct from frontal-midline theta long 
acknowledged to be involved in top-down cognitive control (Cavanagh 
and Frank, 2014), because we found that theta oscillations were more 
strongly expressed in frontal-midline electrodes for older participants. 
Conversely, in younger participants the theta peaks of greatest power 
were concentrated in the parietal-midline cluster. As described above, 
posterior theta-band power may shift into alpha frequency as the 
dominant posterior oscillation (Rodríguez-Martínez et al., 2017), while 
a frontal theta oscillation may mature separately during development 
(Adam et al., 2020; Barriga-Paulino et al., 2011). This relatively late 
emergence of intrinsic, frontal-midline theta oscillation may be related 
to the development of cognitive functions known to recruit 
frontal-midline theta oscillations, for example feedback and error pro-
cessing (Cavanagh and Frank, 2014; Nigbur et al., 2011; Velanova et al., 
2008) and hierarchical cognitive control (Riddle et al., 2020c; Unger 
et al., 2016). Specifically, many cognitive functions, for example 
working memory and top-down control are known to have a protracted 
development through adolescence (Luna et al., 2004). Future studies 
should investigate whether or not the development of these functions is 
related to the development of intrinsic frontal-midline theta oscillations. 
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