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Background: Externalizing problems, including aggression and conduct problems, are thought to involve impaired
attentional capacities. Previous research suggests that the P3 event-related potential (ERP) component is an index of
attentional processing, and diminished P3 amplitudes to infrequent stimuli have been shown to be associated with
externalizing problems and attention-deficit/hyperactivity disorder (ADHD). However, the vast majority of this prior
work has been cross-sectional and has not examined young children. The present study is the first investigation of
whether within-individual changes in P3 amplitude predict changes in externalizing problems, providing a stronger
test of developmental process. Method: Participants included a community sample of children (N = 153) followed
longitudinally at 30, 36, and 42 months of age. Children completed an oddball task while ERP data were recorded.
Parents rated their children’s aggression and ADHD symptoms. Results: Children’s within-individual changes in the
P3 amplitude predicted concomitant within-child changes in their aggression such that smaller P3 amplitudes
(relative to a child’s own mean) were associated with more aggression symptoms. However, changes in P3 amplitudes
were not significantly associated with ADHD symptoms. Conclusions: Findings suggest that the P3 may play a role
in development of aggression, but do not support the notion that the P3 plays a role in development of early ADHD
symptoms. Keywords: P3 ERP; externalizing behavior problems; aggression; attention-deficit/hyperactivity
disorder; early childhood.

Introduction
Externalizing behaviors in early childhood predict
maladaptive outcomes in adulthood, including sub-
stance use and criminality (Petersen, Bates, Dodge,
Lansford, & Pettit, 2015). One key feature of exter-
nalizing disorders is impaired attentional capacities.
Event-related potentials (ERPs), stimulus-locked
neuro-electrical activity measured using electroen-
cephalography (EEG), can be used to study neural
correlates of attentional processing that mark
impaired attention in externalizing problems. The
present study advances understanding of develop-
mental process in externalizing problems by exam-
ining the longitudinal association between neural
functioning and externalizing problems.

P3 ERP and attention processing

The oddball task, in which two stimuli are presented,
one frequent and the other infrequent, is commonly
used to assess neural correlates of attention. A widely
studied index of response to infrequent stimuli in the
oddball task, the P3 ERP component, the third
positive deflection in the waveform poststimulus, is
considered an index of attention. The predominant
theory of the P3 is that it indexes attention and

memory processes, reflecting neural mechanisms
associated with updating mental representations
stored in working memory based on novel incoming
stimuli (Polich, 2012). The cognitive interpretation of
the P3 depends on the task in which it is elicited. In
the current study’s passive oddball task, in which no
behavioral response was required, the P3 likely rep-
resents attentional orienting (Friedman, Cycowicz, &
Gaeta, 2001). Attentional orienting involves rapid,
passive attentional shifts to new/unexpected stimuli,
and may reflect early evaluation of stimulus impor-
tance to determine whether further cognitive process-
ing is necessary (Hermens et al., 2010).

A robust literature has examined the P3 cross-
sectionally at different points in childhood. Meta-
analytic evidence suggests that the auditory P3
amplitude increases across childhood, plateauing
at age 20, whereas its latency decreases across the
life span (van Dinteren, Arns, Jongsma, & Kessels,
2014). Additionally, there are slight variations in the
electrode regions where the P3 is maximal across
development (Hoyniak, Petersen, McQuillan, Sta-
ples, & Bates, 2015; Johnstone, Barry, Anderson,
& Coyle, 1996). Despite differences in morphology
and topography of the P3 elicited in children, an
established literature suggests that the P3 is an
index of attentional processing in childhood (Hoy-
niak et al., 2015; Johnstone, Barry, & Clarke, 2013;
van Dinteren et al., 2014).Conflicts of interest statement: No conflicts declared.
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P3 and externalizing problems

Attentional orienting deficits play a key role in the
social information processing style of individualswith
high levels of aggression (e.g., failing to notice cues of
nonaggressive intent; Dodge & Crick, 1990), explain-
ing why diminished attention orienting capacities
might be associated with externalizing problems.
Therefore, the P3may tap increased risk for external-
izing problems. Given robust findings demonstrating
an association between the P3 and externalizing
problems, the P3 may be an endophenotype (i.e., an
intermediate phenotype) of externalizing psycho-
pathology, reflecting the biological processes under-
lying externalizing problems (Iacono&Malone, 2011).
Meta-analyses have shown that smaller P3 ampli-
tudesareassociatedwith externalizingproblems (Gao
& Raine, 2009; Pasion, Fernandes, Pereira, & Bar-
bosa, 2018). The P3 shows rank-order stability across
adulthood (Yoon, Malone, & Iacono, 2015), and has
been shown to predict later criminality (Gao, Raine,
Venables, &Mednick, 2013). Individual differences in
the P3, which are highly heritable, may be amarker of
genetic risk for externalizing psychopathology (van
Beijsterveldt & van Baal, 2002), and the association
between the P3 and externalizing problems is consid-
ered genetically mediated (Hicks et al., 2007). Addi-
tionally, the P3 is generated by dopaminergic
neurotransmission (Pogarell et al., 2011) and by a
distributed neural circuit including the lateral pre-
frontal cortex (Polich, 2007; Soltani & Knight, 2000),
both of which have shown impairments in external-
izing disorders (Gatzke-Kopp et al., 2009).

Despite considerable research linking the P3 to
externalizing psychopathology, the vast majority of
this priorwork focused onadults andadolescents.We
are aware of no studies that have examined the P3 in
relation to externalizing problems in toddlers and
preschoolers, so it is unclear whether diminished P3
amplitudes might play a role in development of
externalizing problems in early childhood. Early
childhood is an ideal window to study development
of the P3 in relation to externalizing problemsbecause
(a) early childhood is characterized by rapid neurode-
velopment supporting attention and self-regulatory
processes (Diamond, 2002), and (b) externalizing
behaviors are common in early childhood, especially
physical aggression, which reaches its highest level
during this era (Tremblay, 2002). Individual differ-
ences in aggression are highly stable and appear as
early as toddlerhood (Olweus, 1979). Better under-
standing of early neural processes associated with
development of externalizing problems may lead to
earlier, more precisely targeted prevention efforts.

Prior research on the P3 across childhood has
mostly been cross-sectional and has not examined
whether within-individual changes in the P3 predict
within-individual changes in externalizing problems.
Investigating the association within the individual
removes between-subject confounds by using the

individual as their own control, which is a stronger
test of causality than between-subjects approaches
(Duckworth, Tsukayama, & May, 2010). Based on
prior work, we cannot ascertain whether the P3 plays
a role in development of externalizing problems or
whether it is simply a marker of risk for externalizing
psychopathology in general. The P3 has associations
with a number of disordered phenotypes, including
aggression (Patrick, 2008), attention-deficit/hyper-
activity disorder (ADHD; Tsai, Hung, & Lu, 2012),
depression, and schizophrenia (Turetsky et al.,
2015).

The present study

Longitudinal studies of the association between the
P3 and externalizing problems in early childhood can
elucidate neural processes associated with develop-
ment of externalizing behaviors. The present study is
the first, to our knowledge, to examine the within-
individual association between the P3 and external-
izing problems. Different associations can be
observed at the group level (between-individual)
and at the individual level (within-individual), and
mistakenly attributing a between-individual associ-
ation to a within-individual association is known as
the ecological fallacy (Curran & Bauer, 2011). The
present study examined the longitudinal association
between a neural index of attentional processing, the
P3, and externalizing behavior problems in early
childhood, examining both within- and between-
individual associations. Children were followed lon-
gitudinally at 30, 36, and 42 months of age. Our
main question was whether within-child changes in
P3 amplitude predicted within-child changes in
parent-reported externalizing behavior, examining
aggression and ADHD symptoms separately.

Method
Participants

A community sample of children and their families (N = 182)
were recruited from the Bloomington, Indiana area to partic-
ipate when the children were 30, 36, and 42 months of age.
Sample characteristics are reported in Table 1. Participants
were assessed within 1 month of their target age. Children
completed an oddball ERP task, and primary caregivers (97%
mothers) reported on the child’s behavior problems. To be
included for analysis in the present study, children had to
provide usable EEG data in the oddball task (N = 165, 91%).
Exclusion criteria included nonfebrile seizures (n = 2), head
injury (n = 9), and psychotropic medication (n = 2—none of
which were psychostimulants), resulting in a final sample of
153.

Due to plannedmissingness and censoring (i.e., children not
yet age-eligible), in the current sample, a total of 375 EEG
assessments were possible. Of these 375 possible assess-
ments, 73 assessments were not scheduled because the parent
elected not to schedule a visit for their child (65 assessments)
or equipment malfunctioning prevented us from collecting
EEG data at that time (eight assessments). Hence, 302 EEG
assessments were scheduled. Of 302 scheduled assessments,
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257 provided usable EEG data. These 257 assessments were
provided by 153 different children (n1 time = 74, n2 times = 54,
n3 times = 25). Further details on missingness are in
Appendix S1 and Table S1.

Measures

Externalizing behavior problems. Externalizing
behavior problems were measured using mother report on
the Child Behavior Checklist (CBCL 1½–5; Achenbach &
Rescorla, 2000). We examined the two subscales comprising
the Externalizing scale: Aggression (19 items) and Attention
Problems (five items). The Aggression subscale includes items
about physical aggression, destruction, anger, noncompliance,
and attention demands. The Attention Problems subscale has
been interpreted as a measure of ADHD symptoms because it
assesses the three dimensions of ADHD symptoms: inatten-
tion, hyperactivity, and impulsivity (Lifford, Harold, & Thapar,
2008). It is associated with other measures of ADHD, including
the Conners Rating Scale and DSM-IV symptoms of ADHD
(Derks et al., 2008). In addition, it has been shown to measure
ADHD as accurately as the Conners Rating Scale (Derks et al.,
2008), with strong sensitivity and specificity (Chen, Faraone,
Biederman, & Tsuang, 1994).

The CBCL is among the best normed and most widely used
measures for behavior problems in this age range, has good
test–retest reliability and good validity (content, criterion,
construct; Sattler & Hoge, 2006). Primary caregivers rated
whether a behavior was not true (0), somewhat or sometimes
true (1), or very or often true (2), and scores were summed
across items, with higher levels reflecting more behavior
problems. This continuous approach to scoring behavior
problems is consistent with evidence that externalizing

problems and ADHD are dimensional not categorical (Coghill
& Sonuga-Barke, 2012). For this sample, eight children’s
scores were above the borderline clinical threshold of a T-score
≥65 (i.e. above ≥1.5 SD) for externalizing problems. Cronbach’s
alpha in this sample was .90 for aggression and .69 for
ADHD symptoms. Cross-time continuity was r = .63 for
aggression and r = .60 for ADHD symptoms (df = 189, ps <
.001). Children who had scores for externalizing problems
were n30 months = 146, n36 months = 120, n42 months = 101.

P3 ERP. Children participated in an oddball task and a go/
no-go task while EEG data were collected during a lab visit.
The present study focuses on the P3 ERP from the oddball
task. A 6-minute auditory oddball (two-tone discrimination)
task was used to elicit a P3 ERP component to infrequent
sounds. The task was passive; children were not instructed to
respond to any stimuli. Although the P3 from passive and
active tasks have different latencies, spatial distributions, and
cognitive interpretations (Polich, 2007), they both index atten-
tional processing, and smaller amplitudes of both kinds of P3
have been associated with externalizing disorders (Rydkjær
et al., 2017; Tsai et al., 2012). We chose to use a passive
oddball task because more trials of usable data would be
available than a task that required a behavioral response. ERP
measures in a passive task may be especially useful in early
childhood when behavioral response capacities are still devel-
oping and thus less stable, which would complicate interpre-
tation of behavioral task performance.

Pure, low-frequency (1,000 Hz) and high-frequency
(1,500 Hz) tones were randomly presented so that one tone
occurred on 70% of trials (84 trials; frequent stimulus) and the
other tone occurred on 30% of trials (36 trials; infrequent
stimulus), with 120 trials in total. The two tones were coun-
terbalanced as frequent versus infrequent across children.
Each tone lasted for approximately 300 ms, and the task
included an interstimulus interval that varied randomly from
2,300–2,500 ms to prevent habituation. Children were not
asked to make a behavioral response. During presentation of
the auditory tones, children watched a child-friendly cartoon
video on a monitor with the video’s audio turned off. On
average, participants contributed 25.30 (SD = 7.67) usable
infrequent and 58.22 (SD = 18.25) frequent trials.

Netstation Acquisition software version 4.4.2 (Electrical
Geodesics, Inc., Eugene, OR) was used to collect and process
EEG data from a 128-electrode Hydrocel Geodesic Sensor Net
with a sampling rate of 250 Hz. Before recording began,
electrode impedances were adjusted lower than 50 kΩ. Chil-
dren’s continuous EEG data were band-pass filtered from 0.3
to 30 Hz, and epochs 1,200 ms in duration were extracted,
beginning 200 ms prior to the presentation of the target
stimulus. Data were then visually inspected for artifacts.
Following visual inspection, a channel was marked as bad if
a voltage change of greater than 150 lV occurred during a
given segment of length 80 ms, and a segment was marked as
bad if it contained 20 or more bad channels. On average,
participants had 10.07 (SD = 3.83) bad channels of 128
channels.

Epoched data were then re-referenced to the average refer-
ence (i.e., subtracting the average potential of all channels
from the potential at each channel), and baseline corrected by
subtracting the average activity over the 200 ms baseline
period representing grand-averaged waveforms (Figure 1).
After processing, primary components of the ERP waveform
were statistically decomposed using a sequential temporo-
spatial principal components analysis (PCA), which objectively
and empirically determines regions of electrodes and time
frames that parsimoniously account for the variance in the
waveforms, and whose components correspond to ERP com-
ponents (Dien & Frishkoff, 2005). Children’s P3 amplitudes
were calculated as their mean amplitudes for the temporo-
spatial component reflecting the P3 based on timing,

Table 1 Sample characteristics

Variable n %

Sex
Males 83 54
Females 70 46
All 153

Parent ethnicity
Non-Hispanic caucasian 138 90
Hispanic 4 3
African-American 5 3
Asian-American 5 3
Mixed race 1 <1

Parent education
Some high school 1 <1
GED 2 1
High school diploma 2 1
Some college 16 11
College degree 131 86

Marital status
Single 10 7
Married 135 89
Divorced 6 4

Variable M SD

Child age (months) 36.00 4.90
Parent age (years) 33.26 4.85
Family SES 48.99 13.27

One child was missing information on her parent’s education,
and two were missing parental marital status. Family socioe-
conomic status (SES) was calculated using the Hollingshead
(1975) index.

© 2018 Association for Child and Adolescent Mental Health.

1046 Isaac T. Petersen et al. J Child Psychol Psychiatr 2018; 59(10): 1044–51



morphology, and spatial topography. We provide more infor-
mation about the temporo-spatial PCA in Appendix S2. PCA-
derived P3 waveforms are depicted in Figure S1. Cross-time
continuity of the P3 amplitude was r[87] = .21 (p = .043, two-
tailed), suggesting some rank-order stability but also consid-
erable neurodevelopmental change from 30 to 42 months of
age.

Statistical analysis

Using hierarchical linear modeling (HLM), which handles
missingness and unbalanced data (Singer & Willett, 2003),
we fit growth curve models with random intercepts and slopes
to each child’s trajectory of externalizing problems. Growth
curve models examined whether within-child changes in P3
amplitudes predicted concomitant within-child changes in
externalizing problems, controlling for between-child associa-
tions of P3 amplitudes with externalizing problems. Models
included the child’s (a) mean P3 amplitude across time in
association with the child’s intercept of externalizing problems
(i.e., their level of externalizing problems at 30 months of age):
c02, (b) mean P3 amplitude across time in association with the
child’s linear slope of externalizing problems (i.e., their change
in externalizing problems from 30 to 42 months of age): c12, (c)
time-varying P3 amplitude (centered around the child’s mean
P3 amplitude across occasions) predicting concomitant within-
child changes in externalizing problems: c20, and (d) covariates
that could plausibly account for the association between P3
amplitudes and externalizing problems, including the child’s
sex as a time-invariant covariate to account for the well-
established sex differences in externalizing problems, and
time-varying covariates to account for potentially systematic
ERP missingness (number of bad channels and number of
infrequent trials kept). Centering the P3 amplitude around the
child’s own mean (so-called person-mean centering) follows
best practice for disaggregating within- and between-individ-
ual effects (Curran & Bauer, 2011). An assumption of the
disaggregation is that the person-level mean P3 amplitude is
estimated without error. We were interested in both within-
individual (c20) and between-individual (c02, c12) effects. The
between-child effects examined whether children’s mean P3
amplitudes across time were associated with their intercepts or
slopes of externalizing problems. The within-child effect exam-
ined whether individuals’ time-specific deviations in the P3
amplitude away from their own mean predicted their time-
specific deviations in externalizing problems over and above
their linear slopes (i.e., b1i) of externalizing problems. Thus, the
within-child effect examined whether within-child changes in
the P3 amplitude predicted concomitant within-child changes
in externalizing problems. We fit separate growth curve models
for aggression and ADHD symptoms. Model equations and
information about the models are in Appendix S3. As a
sensitivity analysis, we examined models with multiple impu-
tation (Appendix S3). Because the substantive findings were
unchanged (Table S4), results from the raw data are presented.

Results
Descriptive statistics and correlations between study
variables are in Tables S2 and S3. Bivariate corre-
lations showed that P3 amplitudes were negatively
associated with aggression but not significantly
correlated with ADHD symptoms (Table S3).

Next, we examined the within- and between-child
associations between P3 amplitudes and externaliz-
ing problems using HLM growth curve models. HLM
growth curvemodel results are in Table 2. The child’s
mean P3 amplitude across time was negatively

associated with their intercepts (c02: B = �0.30,
p = .039), but not their slopes, of aggression.
Within-individual changes in the P3 amplitude were
negatively associated with within-child changes in
aggression (c20: B = �0.31, p = .004). Findings sug-
gest that smaller P3 amplitudes (relative to one’s
mean) were concurrently associated with more
aggression (relative to one’s level of aggression at
other timepoints) above andbeyond one’s linear slope
of aggression. Findings held even accounting for
ADHD symptoms (Table S5). The child’s mean P3
amplitude across time was not significantly associ-
ated with their intercepts (c02) or slopes (c12) of ADHD
symptoms. Within-child changes in P3 amplitudes
were not significantly associated with within-child
changes in ADHDsymptoms (c20: B = �0.06, p = .12).

Discussion
The present study examined the longitudinal,
within-person association between P3 ERP ampli-
tudes and parent-reported externalizing problems in
very young children. Our findings suggest that
smaller mean P3 amplitudes across ages 30–
42 months were associated with higher levels of
aggression at 30 months of age. Additionally, find-
ings suggest that within-child changes in the P3
amplitude were negatively associated with concomi-
tant within-child changes in aggression. When chil-
dren showed smaller P3 amplitudes (relative to their
own mean level), they showed more concurrent
aggression. However, within-child changes in P3
amplitudes were not significantly associated with
ADHD symptoms.

Our findings of an association between smaller P3
amplitudes and aggression are consistent with prior
meta-analyses examining externalizing problems
(Gao & Raine, 2009; Pasion et al., 2018) and with
conceptualizations of the P3 as an endophenotype of
externalizing problems (Iacono & Malone, 2011). The
auditory P3 amplitude increases across childhood
(van Dinteren et al., 2014), and is considered an
index of attentional orienting (Friedman et al.,
2001).

Although the P3 amplitude is often found to be
smaller in children with ADHD, as compared to
controls (e.g., Tsai et al., 2012), contradictory find-
ings have also emerged (e.g., Rydkjær et al., 2017).
Yoon, Iacono, Malone, Bernat, and McGue (2008)
found that children with ADHD and a comorbid
externalizing disorder (oppositional defiant disorder
or conduct disorder) had smaller P3 amplitudes,
whereas childrenwith ADHDalone did not show such
an effect. These findings suggest that the smaller P3
amplitude typically noted in children with ADHD
might actually reflect comorbid externalizing prob-
lems. Moreover, to our knowledge, no studies that
identified an association between P3 amplitudes and
ADHD examined whether within-individual changes
in P3 were associated with ADHD. Our findings align
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with findings of prior studies that the smaller P3
amplitude in children with externalizing problems is
not due to ADHD symptoms (Baving, Rellum, Laucht,
& Schmidt, 2006). Thus, evidence does not support a
causal interpretationof anassociationbetween theP3
and ADHD; prior findings of an association between
the P3 and ADHD could reflect their common associ-
ation with a third variable (e.g., broad factor of
externalizing problems). This finding could reflect an
important developmental fact about the meaning of
the P3 in the oddball task, or less within-individual
variation in ADHD symptoms than in aggression
across 30–42 months (Appendix S3). Or perhaps
attention problems are a less coherent or stable
construct in very early development. Or the finding
could reflect measurement issues such as slightly
weaker reliability of theshorterADHDscale compared
to the longer aggression scale.

By contrast, the within-individual association
between changes in P3 amplitude and aggression
provides stronger evidence consistent with a causal
association, even though we cannot eliminate the
possibility of time-varying confounds or the reverse
direction of effect. How might a smaller P3 amplitude
be involved in development of aggression? First, it is
important to note that a smaller P3 amplitude may
reflect not just underprocessing of relevant informa-
tion, but also overprocessing of irrelevant informa-
tion (Hermens et al., 2010), which could impair
higher order processes related to detecting and
responding to subtle environmental and social cues.
Within a social information processing framework,
underprocessing of relevant information (e.g., cues
of safety) and overprocessing of irrelevant informa-
tion (e.g., ambiguous cues perceived as indicating
threat) hypothetically could affect the first stage of
social information processing, encoding of social

cues. Altered encoding could, in turn, influence
downstream attributions, making it more likely that
individuals interpret ambiguous cues as hostile, and
respond with aggression. Within a social information
processing framework, impaired attention and
encoding processes could explain, at a basic stimu-
lus processing level, why individuals with smaller P3
amplitudes show more aggression, particularly reac-
tive (as opposed to proactive) aggression. This is
consistent with findings showing smaller P3 ampli-
tudes in impulsive aggression, but not premeditated
aggression (for a review, see Patrick, 2008). For
instance, children with poorer novelty detection (e.g.,
smaller P3 amplitudes), may miss key changes in
others’ voice tone in daily interactions (Hoyniak
et al., 2018), leading to agonistic conflicts with
others, which in turn lead to future assumptions
about hostile intent and negatively biased social
information processing.

The present study had several key strengths. First,
we examined the P3 ERP in very young children, an
important group with high theoretical relevance for
understanding how externalizing problems develop.
Based on the morphology and topography of the P3,
evidence suggests the P3 component elicited in the
present study may correspond to the P3 elicited from
older subjects. Our findings contribute to a relatively
sparse literature focusing on ERPs elicited during
toddlerhood. Second, the study was longitudinal
with repeated measures of both the P3 and behavior
problems. The repeated measures design allowed us
to examine whether within-child changes in P3
amplitude predicted concomitant within-child
changes in behavior problems. We believe this is
the first study to examine the within-individual
association between the P3 and externalizing prob-
lems, providing a stronger test of causality.
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The present study also had limitations. First,
because of the correlational nature of the design,
and the many likely determinants of psychological
development, we cannot make definitive causal infer-
ences. Next, our sample was predominantly middle
class, whichmay limit generalizability of our findings.
We hope to see future studies with more broadly
representative as well as higher risk samples and the
use of informants beyond parents. The extent of
longitudinal ERP missingness warrants caution in
interpreting our findings. Despite its clinical non-
specificity, the P3 may have transdiagnostic rele-
vance. An interesting further question would be how
the P3 relates in early childhood to additional dimen-
sions of behavior problems, including internalizing
and thought-disordered problems, given findings that
the P3 is also associated with depression and
schizophrenia (Turetsky et al., 2015).

Conclusion
The present longitudinal study is the first investiga-
tion of the within-individual association between the
P3 and externalizing problems, which provides a
stronger test of causality than previous studies of
between-subjects effects. Findings indicate that chil-
dren’s within-individual changes in the P3 amplitude
predicted concomitant within-child changes in their
aggression but not ADHD symptoms. Importantly,
this association was present in toddlerhood, an era
when early targeted intervention efforts may effi-
ciently prevent later, severe externalizing problems.
Findings are consistent with the notion that the P3
may play a role in development of aggression. They
are not consistent with the P3 playing a causal role
in development of ADHD.

Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Appendix S1. Missingness.
Appendix S2. Temporo-spatial principal components
analysis.
Appendix S3. Information about the HLM growth curve
models.
Table S1. EEG observations per child by number of
assessments and age at time of visit.
Table S2. Descriptive statistics and correlation matrix
of P3 amplitude, aggression, and ADHD symptoms at
30, 36, and 42 months of age.
Table S3. Descriptive statistics and correlation matrix
of model variables.
Table S4. Results of HLM growth curve models with
multiple imputation.
Table S5. Results of HLM growth curve model of
aggression while accounting for ADHD symptoms (and
additional covariates).
Figure S1. Left panel: Children’s PCA-derived P3
waveforms/Right panel: Topo plot of the PCA compo-
nent reflecting the P3.
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Table 2 Results of HLM growth curve models

Outcome B b SE df p

Aggression
Intercept 15.52 0.01 2.27 142 <.001
Time �0.11 0.00 0.13 90 .371
Sex �1.07 �0.07 1.00 142 .288
Sex 9 Time 0.06 0.03 0.12 90 .607
Mean P3 amplitude �0.30 �0.13 0.15 142 .039
Mean P3 amplitude 9

Time
0.02 0.05 0.02 90 .370

*Time-varying P3
amplitude

�0.31 �0.12 0.10 90 .004

*Number of bad
channels

�0.09 �0.06 0.09 90 .306

*Number of
infrequent trials
kept

�0.13 �0.14 0.06 90 .022

ADHD symptoms
Intercept 3.30 0.03 0.75 142 <.001
Time �0.06 �0.07 0.04 90 .126
Sex �0.66 �0.08 0.35 142 .064
Sex 9 Time 0.08 0.11 0.04 90 .053
Mean P3 amplitude �0.03 �0.05 0.05 142 .538
Mean P3 amplitude 9

Time
0.00 0.01 0.01 90 .878

*Time-varying P3
amplitude

�0.06 �0.07 0.04 90 .122

*Number of bad
channels

�0.01 �0.01 0.03 90 .849

*Number of
infrequent trials
kept

�0.01 �0.04 0.02 90 .546

‘Time’ reflects the slope term, and is centered at the first time
point so that the intercept reflects the child’s level at
30 months (i.e. 0, 6, 12 months from 30 months). ‘Sex’ is
coded with female = 1, male = 0. ‘Mean P3 amplitude’ refers to a
given child’s mean P3 amplitude across time (time invariant).
‘Time-varying P3 amplitude’ refers to a given child’s P3
amplitude at a given time point that is centered around their
mean P3 amplitude across time (time varying). Interaction
terms with time essentially reflect the prediction of slopes of
the outcome (e.g. ‘Sex 9 Time’ reflects sex predicting slopes of
the outcome). Asterisks reflect time-varying terms. Terms in
bold reflect significant associations at p < .05 level.

© 2018 Association for Child and Adolescent Mental Health.
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Key points

� Previous research suggests that externalizing problems are characterized by attentional impairments and
smaller P3 amplitudes.

� Prior work has been mainly cross-sectional, has not examined young children, and has not examined
whether within-individual changes in P3 amplitude predict changes in externalizing behavior.

� Our findings indicated that children’s within-individual changes in the P3 amplitude predicted concomi-
tant within-child changes in their aggression but not ADHD symptoms.

� Findings support the interpretation that the P3 may play a role in development of aggression. They do not
support such a role in development of ADHD.
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Supplementary Appendix S1. Missingness. 

Some data were missing because of planned missingness (n30 months = 17, n36 months = 7) 

and some data were missing because of censoring (i.e., a child had not yet aged into a given 

measurement occasion, and therefore was not yet eligible; n36 months = 9; n42 months = 36).  

Censoring and planned missingness reflect data that are missing completely at random (MCAR).  

Planned missingness is an a priori design feature in which not all participants will be invited to 

participate at all time points.  A portion of the children participated in a prior version of the 

protocol at the earliest ages (i.e., 30 and 36 months of age) while participating in the current 

protocol at later ages (i.e., 36 and 42 months of age).  Using a planned missingness design, we 

opted beforehand to include these children’s data in any longitudinal analyses (including the 

present study) even though they had not completed the current version of the protocol at the 

earliest ages.  However, our hierarchical linear modeling strategy handles missing data, and our 

findings were substantially similar when using multiple imputation approaches or when 

excluding participants who had a P3 amplitude at only one time point (see Supplementary 

Appendix S3), suggesting that the missingness did not substantially influence our inferences. 

Of the children with usable EEG data, 25 had usable EEG data at all three ages, and 54 

children provided usable data at only two time points.  Including the 25 children who provided 

usable EEG data at all three ages, 50 total children provided usable EEG data at 30 and 36 

months, 39 children at 36 and 42 months, and 40 children at 30 and 42 months.  Excluding the 

children who provided usable EEG data at all three ages, 25 children provided usable EEG data 

at only 30 and 36 months, 14 children at only 36 and 42 months, and 15 children at only 30 and 

42 months.  These numbers are displayed in Supplementary Table S1.  Reasons for missingness 

in EEG data (i.e., a child did not provide usable data despite a scheduled EEG visit) were as 
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follows: child refusal to wear the cap (4% of the sample), child refusal to participate in the task 

(2%), fewer than 100 electrodes with low impedances (1%), fewer than 8 artifact-free trials in 

either condition of the oddball ERP task (3%), and other technical problems (4%).  These 

attrition rates are consistent with other studies using EEG in young children (Bell & Cuevas, 

2012). 

We examined whether EEG missingness was related to other variables.  There was no 

significant difference between children who did and did not provide usable EEG data in terms of 

the socioeconomic status (SES) of the child’s family, or the child’s age, sex, or level of 

temperamental inhibitory control or fear on the Children’s Behavior Questionnaire (Rothbart, 

Ahadi, & Hershey, 1994).  Missingness in externalizing problems was also unrelated to these 

variables, with one exception: missingness was higher in older children than younger children 

(t[40.13] = -5.37, p < .001), likely owing to sample attrition and censoring (discussed above). 
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Supplementary Appendix S2. Temporo-spatial principal components analysis. 

Sequential temporo-spatial principal components analysis (PCA) is more likely to isolate 

the underlying neural signal when compared to examining individual electrodes (Dien & 

Frishkoff, 2005), and is especially useful when analyzing data from young children because of 

movement artifacts (Dien, 2012).  Sequential temporo-spatial PCA was conducted using the ERP 

PCA toolkit (Dien, 2010).  The number of factors to retain was selected objectively using a 

Parallel Test, which compares eigenvalues from the observed data to eigenvalues from randomly 

simulated data (Dien & Frishkoff, 2005).  The PCA resulted in considerable data reduction from 

the original 38,400 data points per subject based on 128 electrodes × 300 time samples (i.e., 250 

Hz sampling: 1 time sample every 4 ms of the 1,200 ms epoch = 1,200 ÷ 4).  The initial temporal 

PCA identified 18 temporal factors accounting for 95% of variance from the 300 time samples, 

and the subsequent temporo-spatial PCA identified 13 spatial factors accounting for 87% of 

variance across the 128 electrodes.  Thus, the temporo-spatial PCA reduced the data from 38,400 

data points per subject to 234 principal components (i.e., 18 temporal factors × 13 spatial 

factors). 

The temporo-spatial factor corresponding to the P3 (component 1 out of 234 components) 

was selected based on a priori expectations about the latency and topography of the component.  

Because this was the first temporo-spatial factor, it indicated that it explained the most variance 

in the waveform (8.35%).  This temporo-spatial factor peaked around 448 ms post-stimulus, and 

included a posterior/parietal positivity with a corresponding frontal negativity.  We focused on 

posterior/parietal electrodes (see Supplementary Figure S1) to identify this temporo-spatial factor 

because previous findings indicate that the P3 elicited from oddball paradigms has a 

posterior/parietal distribution in children (Hoyniak, Petersen, McQuillan, Staples, & Bates, 2015; 



4 
 

Johnstone, Barry, Anderson, & Coyle, 1996).  PCA-derived P3 waveforms are depicted in 

Supplementary Figure S1.  The PCA successfully isolated the P3 component (that distinguished 

between frequent and infrequent trials) from surrounding ERP components.  Children’s P3 

amplitudes were calculated as their mean amplitudes for this temporo-spatial component.  No 

windowing was used in the calculation; in PCA, every electrode and time sample is included in 

the calculation of the amplitudes to the extent that each electrode and time sample reflects the 

component of interest (in this case, component 1 reflecting the P3) based on factor loadings.    
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Supplementary Appendix S3. Information about the HLM growth curve models. 
 
Model Equations for Final Model 
 
Nesting: 
Level 1: t = time (i.e., age in months, centered at 30 months of age; T1 = 0, T2 = 6, T3 = 12) 
Level 2: i = individual 
 
Level 1—Within individual: 
EXTti = β0i + β1i(timeti) + β2i(P3centeredti) + β3i(BadChannelsti) + β4i(InfrequentTrialsti) + eti 
 
Level 2—Between individual: 

 β0i = γ00 + γ01(sexi) + γ02(P3meani) + r0i  
 β1i = γ10 + γ11(sexi) + γ12(P3meani) + r1i  
 β2i = γ20 
 β3i = γ30 
 β4i = γ40 

  
Random effects (Level 1 variance component): 
σ2 = Level 1 variance 
 
Random effects (Level 2 variance-covariance components): 
τ00 = variance of the intercepts 
τ01 = covariance between the intercepts and slopes 
τ11 = variance of the slopes 
 
Definitions of Model Parameters 

“EXT” = externalizing problems; “P3centered” = child’s P3 amplitude at a given time 

point that is centered around their own mean P3 amplitude across time (i.e., person-mean-

centered P3 amplitude); “BadChannels” = number of bad channels; “InfrequentTrials” = number 

of infrequent trials kept; “P3mean” = a given child’s mean P3 amplitude across time. 

HLM growth curve models fit random intercepts and slopes of externalizing problems.  

“β0i” reflects the association with the random intercepts, centered at 30 months (i.e., the first 

time point).  “β1i” reflects the association with the random linear slopes. “β2i”, “β3i”, and “β4i” 

reflect the time-varying predictors.  “γ00” reflects the average intercept across children.  “γ10” 

reflects the average linear slope across children.  “eti” reflects the Level-1 random effect (Level-
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1 residuals).  “r0i” and “r1i” reflect the Level-2 random effects (Level-2 residuals) of intercepts 

and slopes, respectively. 

To disaggregate within- and between-individual effects in the association between the P3 

and externalizing problems, we included both within-individual effects and between-individual 

effects in the HLM growth curve models, consistent with best practices (Curran & Bauer, 2011).  

The between-individual effects were estimated by including the child’s own mean P3 amplitude 

across time (P3meani) as a predictor of both the intercepts (γ02) and slopes (γ12) of externalizing 

problems (i.e., Level 2).  Both between-individual effects were estimated to disentangle the 

between-individual effects on the level (intercepts) versus change (slopes) of externalizing 

problems.  The within-individual effect was estimated by centering the P3 amplitude around the 

child’s own mean, so-called person-mean centering.  That is, a child’s own mean P3 amplitude 

across time (P3meani) was subtracted from their own time-specific P3 amplitude: i.e., 

P3centeredti = P3ti - P3meani.  The within-individual effect was estimated by including the 

person-mean-centered P3 amplitude (P3centeredti) as a time-varying predictor (γ20) of 

externalizing problems (i.e., Level 1). 

We were primarily interested in examining both the within-individual (γ20) and between-

individual (γ02, γ12) associations between the P3 and externalizing problems.  “γ20” reflects 

whether within-individual changes in the P3 amplitude (i.e., individuals’ time-specific deviations 

in the P3 amplitude away from their own mean) are associated with concomitant within-

individual changes in externalizing problems (time-specific deviations in externalizing problems 

over and above their linear slopes, β1i).  “γ02” reflects whether a child’s mean P3 amplitude 

across time is associated with their intercepts of externalizing problems (i.e., their level at 30 
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months).  “γ12” reflects whether a child’s mean P3 amplitude across time is associated with their 

linear slopes of externalizing problems across 30 to 42 months. 

We examined within- and between-individual associations in the context of covariates 

that may account for any potentially systematic ERP missingness (the number of infrequent trials 

kept and the number of bad channels).  We also included the child’s sex as a covariate given the 

sex differences in rates and growth of aggression and ADHD symptoms in early childhood 

(Baillargeon et al., 2007).  We allowed all time-invariant predictors to covary with both the 

intercepts and slopes of externalizing problems, so we could comparably compare the between-

child association of the child’s mean P3 amplitude across time with their intercepts versus slopes 

of externalizing problems.  In terms of time-invariant covariates, “γ01” reflects whether boys and 

girls differ in their intercepts of externalizing problems (i.e., their level at 30 months).  “γ11” 

reflects whether boys and girls differ in their linear slopes of externalizing problems across 30 to 

42 months.  In terms of time-varying covariates, “γ30” reflects whether the number of bad 

channels is associated with externalizing problems, and “γ40” reflects whether the number of 

infrequent trials kept is associated with externalizing problems. 

Additional Information about the HLM Growth Curve Models 

 We fit growth curve models using the lme function of the nlme package (Pinheiro, Bates, 

DebRoy, & Sarkar, 2009) in R (R Core Team, 2016) for hierarchical linear modeling (HLM).  

The HLM growth curve models in the present study fit random intercepts and slopes of 

externalizing problems.  The study aimed to estimate both within-individual and between-

individual associations between the P3 and externalizing problems.  To disaggregate within- and 

between-individual effects in the models, we included predictors for both the child’s mean P3 

amplitude across time (i.e., a between-individual effect) and the child’s person-mean-centered P3 
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amplitude (i.e., P3 amplitude at a given time point that is centered around their own mean P3 

amplitude across time; a within-individual effect).  Thus, the HLM growth curve models 

examine both the within-individual and between-individual association between the predictor 

(P3) and outcome (externalizing problems).  At the between-individual level, the HLM growth 

curve models examine children’s mean values on the predictor across time in relation to their 

intercept and slopes on the outcome over time.  At the within-individual-level, the HLM growth 

curve models examine individuals’ time-specific deviations in the predictor in relation to their 

time-specific deviations in the outcome over and above the effect of time (i.e., β1i, linear slopes) 

on the outcome (Curran, Lee, Howard, Lane, & MacCallum, 2012; Wang & Maxwell, 2015).  

Thus, our model examines whether within-individual changes in the predictor (P3 amplitude) are 

associated with concomitant within-individual changes in the outcome (externalizing problems; 

Duckworth, Tsukayama, & May, 2010; Galla et al., 2014).  The time-varying P3 predictor 

(P3centeredti) reflects children’s change (i.e., time specific deviations) in P3 amplitude because 

the between-subject variance has been removed as it is person-mean centered, and therefore, 

children’s changes in P3 amplitude relative to their own mean P3 amplitude are captured.  The 

time-varying P3 predictor predicts children’s concomitant change (i.e., time-specific deviations) 

in externalizing problems (γ20) because the association is with a time-varying predictor whose 

between-subject variance has been removed, and therefore it only accounts for within-individual 

(i.e., Level-1) variance, i.e., change, in externalizing problems that is over and above the effect 

of their linear slopes of externalizing problems (β1i).  An assumption of this modeling approach 

is that the person-level mean P3 amplitude is estimated without error.  For other empirical 

examples using similar models, see Duckworth et al. (2010) and Galla et al. (2014). 

Model Building 
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To select final models, we followed a model building sequence.  Consistent with 

recommendations (Hox, Moerbeek, & van de Schoot, 2017), restricted maximum likelihood was 

used to compare models with the same fixed effects but different random effects.  Full maximum 

likelihood was used to compare models with different fixed effects.  To account for the modest 

sample size, the final models used restricted maximum likelihood (McNeish & Stapleton, 2016). 

First, we fit unconditional means models with random intercepts to the trajectories of 

externalizing problems.  The unconditional means models of aggression showed considerable 

within-individual (σ2 = 13.14; 95% confidence interval of standard error estimate: [3.30, 3.98]) 

and between-individual (τ00 = 20.42; 95% CI of standard deviation estimate: [3.89, 5.25]) 

variance, suggesting that the average child varies over time in aggression and that the cross-time 

means of aggression differ between children.  We also observed significant within-individual (σ2 

= 1.31; 95% CI of standard error estimate: [1.04, 1.26]) and between-individual (τ00 = 1.60; 95% 

CI of standard deviation estimate: [1.08, 1.49]) variance in ADHD symptoms, suggesting that the 

average child varies over time in ADHD symptoms and that the cross-time means of ADHD 

symptoms differ between children.  However, there was less within- and between-individual 

variance in ADHD symptoms compared to aggression, possibly in part because the scale of 

ADHD symptoms was shorter than the aggression scale. 

Second, to account for the change in externalizing problems over time, an unconditional 

growth model was fit with random intercepts and a linear random slope for time (a random 

intercepts and slopes model).  Despite a non-significant mean of the slopes for aggression or 

ADHD, there was a significant variance of the slopes for both aggression (95% CI of standard 

deviation estimates: τ11 = [0.11, 0.44]) and ADHD symptoms (95% CI: τ11 = [0.08, 0.15]), 

indicating that children showed significant within-child change in aggression and ADHD 
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symptoms over time (i.e., children showed different trajectories).  Although models with random 

slopes did not fit significantly better than models with fixed slopes for aggression at the p < .05 

level (χ2[2] = 4.34, p = .11), we retained random slopes in order to (a) most accurately estimate 

each child’s growth curve, and (b) fit models consistent with best practices for disaggregating 

within- and between-individual associations.  As Curran and Bauer (2011, p. 589) note, “An 

important element of the growth model is that the values of the intercept and slope components 

vary randomly across persons.”  Models with random slopes fit significantly better than models 

with fixed slopes for ADHD symptoms (χ2[2] = 13.40, p = .001).  Findings did not substantially 

differ in the final models when fitting fixed slopes rather than random slopes. 

Third, we added predictors for the within-individual (P3centeredti) and between-

individual (P3meani) associations between P3 amplitudes and externalizing problems.  Fourth, 

we added covariates that might plausibly explain the association between P3 amplitudes and 

externalizing problems (sex i, BadChannelsti, and InfrequentTrialsti).  The growth curve models 

with predictors for the within-individual and between-individual associations between P3 

amplitudes and externalizing problems, along with covariates, served as the final models. 

Multiple Imputation 

As a sensitivity analysis, we examined models with multiple imputation using the Amelia 

package (Honaker, King, & Blackwell, 2011) in R.  Amelia uses an expectation-maximization 

with bootstrapping algorithm, and is well suited for longitudinal data (Honaker & King, 2010).  

All model variables—age, sex, oddball P3 amplitude, aggression, covariates for ADHD 

symptoms, numbers of good trials and bad channels—were used to create imputed values for 

1,000 data sets.  The variables identifying the participant and participant’s age were specified in 

the imputation model to appropriately handle the dependence of longitudinal data.  Data were 
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imputed 1,000 times to ensure appropriate power (Graham, Olchowski, & Gilreath, 2007), but 

findings did not substantially differ with fewer imputations.  The HLM growth curve models 

were run on each imputed data set separately, and then the results were combined using the 

mitools (Lumley, 2010) and mix (Schafer, 1997) packages in R, which use Rubin’s (1987) rules 

for combining results of analyses on multiply imputed data sets.  Because the focal results were 

substantially unchanged when using multiple imputation (although the between-individual 

association between the child’s mean P3 amplitude across time and their intercepts of aggression 

became marginally significant, the within-individual association between person-mean-centered 

P3 amplitudes and aggression remained significant; see Supplementary Table S4), results from 

the raw data are presented. 

Follow-Up Analyses 

As a follow-up test, we also examined the higher-order Externalizing Problems scale, 

composed of the sum of the Aggression and Attention Problems first-order scales.  Within-child 

changes in the P3 amplitude were negatively associated with within-child changes in 

externalizing problems (γ20: B = -.36, β = -.11, SE = .13, df = 90, p = .006).  Thus, findings for 

the Externalizing Problems scale closely paralleled results for the Aggression scale. 

As another follow-up analysis, we examined whether the within-individual association 

between P3 amplitudes and aggression differed between boys and girls.  The association did not 

significantly differ between boys and girls (γ21: B = .08, β = .02, SE = .22, df = 89, p = .699).  

Nevertheless, we likely have limited power to detect sex differences in the association, so we 

interpret these results with caution. 

To examine the extent to which missingness impacts our results, we fit separate models 

with only those children who had a P3 amplitude at two or more time points (children who 
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inform the estimate of the time-varying effect, i.e., the within-child association), in addition to 

models with multiple imputation (see above).  Model results were the same when we fit the 

models only with children who had a P3 amplitude at two or more time points.  Thus, excluding 

participants who did not inform the time-varying effect did not impact our findings. 

Model Assumptions 

One of the assumptions of disaggregating within- and between-individual effects using 

person-mean centering in a HLM growth curve model is that the time-varying predictor does not 

show systematic differences across time (Curran & Bauer, 2011).  To test this assumption, we 

examined whether P3 amplitudes significantly differed across time using paired sample t-tests.  

P3 amplitudes did not significantly differ from 30 to 36 (t[49] = 1.38, p = .175) or from 36 to 42 

(t[38] = -0.27, p = .785) months.  Thus, to disaggregate within- and between-child effects in the 

association of P3 amplitudes with externalizing problems, we met the assumption that P3 

amplitudes did not show significant differences across time.  Nevertheless, even if an undetected 

trend of the P3 amplitude exists, we followed best practices for handling this possibility by 

simultaneously examining (a) the child’s mean P3 amplitude (γ02, γ12), (b) the child’s time-

varying person-mean centered P3 amplitude (γ20), and (c) time (γ10) as a time-varying predictor 

(Wang & Maxwell, 2015).  In sum, evidence that (a) we obtained similar findings with and 

without multiple imputation, and that (b) we met model assumptions, provides greater 

confidence in our inferences.  
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Supplementary Table S1. EEG observations per child by number of assessments and age at time 
of visit. 

 
 
 Age at Assessment  
Usable EEG data 30 36 42 Number of Children 
1 assessment (n = 74) 41   41 
  14  14 
   19 19 
2 assessments (n = 54) 25 25  25 

  14 14 14 
 15  15 15 

3 assessments (n = 25) 25 25 25 25 

Usable EEG observations 
per age at assessment 106 78 73 153 
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Supplementary Table S2. Descriptive statistics and correlation matrix of P3 amplitude, 
aggression, and ADHD symptoms at 30, 36, and 42 months of age. 

 
 
 P3 Amplitude (μV)  Aggression  ADHD symptoms 
  30 mo 36 mo 42 mo   30 mo 36 mo 42 mo   30 mo 36 mo 42 mo 

P3 – 30 mo –           
P3 – 36 mo .15 –          
P3 – 42 mo .38* .33* –         

AGG – 30 mo -.14 .02 -.19  –       
AGG – 36 mo .11 -.17 -.13  .55*** –      
AGG – 42 mo .09 -.23† -.18  .52*** .75*** –     

ADHD – 30 mo -.04 -.01 -.10  .50*** .31*** .25*  –   
ADHD – 36 mo .16 -.11 -.12  .37*** .60*** .46***  .58*** –  
ADHD – 42 mo  .11 -.09 -.11  .23* .36*** .51***  .39*** .63*** – 
M 5.13 4.32 4.32   9.14 10.20 9.21   2.51 2.36 2.10 
SD 3.80 3.98 3.85  5.55 5.95 5.82  1.82 1.55 1.63 
 

 
Note. *** p < .001; * p < .05; † p < .10; all ps two-tailed.  “mo” = months of age.  It is interesting 

that there is no simple bivariate association between P3 amplitudes and either aggression or 

ADHD at any age, even though the associations have the same direction (negative) and 

magnitude (rs between -.14 and -.18 for aggression) as the direction and magnitude of the 

association that collapses across age and was significantly negative (r = -.16, p = .011; 

Supplementary Table S3).  The bivariate associations also have the same direction and 

magnitude as the direction and magnitude of the significant association observed in a HLM 

model that accounts for nested data (β = -.12, p = .004; Table 2).  This discrepancy may reflect 

the attenuated power at any given age (because of a smaller n).  This would emphasize the 

importance of longitudinal analytic approaches that use all available information for increased 

power along with reduced measurement error (Scherbaum & Ferreter, 2009), such as the 

longitudinal analytic approaches used in the present study.
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Supplementary Table S3. Descriptive statistics and correlation matrix of model variables. 
 

Variable Age Sex P3 Aggression ADHD 
Number of 
Bad Channels 

Infrequent 
Trials Kept 

Age –       
Sex .00 –      
P3 ERP amplitude -.09 -.12† –     
Aggression .01 -.09† -.16* –    
ADHD symptoms -.10† -.11* -.07 .53*** –   
Number of Bad Channels .00 -.23*** .00 .07 .10 –  
Infrequent Trials Kept -.13* .09 .01 -.10 -.07 -.33*** – 
M 36.00 0.45 4.66 9.50 2.35 10.07 25.30 
SD 4.90 0.50 3.87 5.76 1.69 3.83 7.67 

 
Note. *** p < .001; * p < .05; † p < .10; all ps two-tailed.  “Sex” is coded with female = 1, male = 0.  Child age in months.  A data 

dictionary of the study variables is published at https://osf.io/25vq6. 

https://osf.io/25vq6
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Supplementary Table S4.  Results of HLM growth curve models with multiple imputation. 
 

Outcome: Aggression B β SE df p 
intercept 13.55 0.03 2.38 3,623.54 < .001 
Time -0.02 0.00 0.14 8,733.04 .876 
Sex -1.38 -0.12 0.94 64,582.89 .144 
Sex × Time 0.00 0.00 0.10 14,164.79 .976 
Mean P3 amplitude -0.37 -0.15 0.22 9,209.97 .096 
Mean P3 amplitude × Time 0.00 0.00 0.02 8,359.31 .987 
*Time-varying P3 amplitude -0.20 -0.10 0.09 3,910.25 .039 
*Number of bad channels -0.01 0.00 0.10 3,160.58 .931 
*Number of infrequent trials kept -0.06 -0.08 0.05 2,706.79 .236 

      
Outcome: ADHD symptoms B β SE df p 
intercept 3.12 0.00 0.69 5,961.24 < .001 
Time -0.07 -0.11 0.04 12,038.20 .116 
Sex -0.62 -0.12 0.30 122,430.17 .039 
Sex × Time 0.04 0.05 0.03 22,492.27 .283 
Mean P3 amplitude -0.07 -0.07 0.07 11,950.96 .346 
Mean P3 amplitude × Time 0.00 0.02 0.01 10,475.15 .705 
*Time-varying P3 amplitude -0.03 -0.06 0.03 5,124.90 .216 
*Number of bad channels 0.02 0.03 0.03 4,924.21 .584 
*Number of infrequent trials kept -0.01 -0.02 0.01 3,891.39 .705 

 
Note: “Time” reflects the slope term, and is centered at the first time point so that the intercept 

reflects the child’s level at 30 months (i.e., 0, 6, 12 months from 30 months).  “Sex” is coded 

with female = 1, male = 0.  “Mean P3 amplitude” refers to a given child’s mean P3 amplitude 

across time (time invariant).  “Time-varying P3 amplitude” refers to a given child’s P3 amplitude 

at a given time point that is centered around their mean P3 amplitude across time (time varying).  

Results were combined from 1,000 multiply imputed data sets (see Supplementary Appendix 

S3).  Interaction terms with time essentially reflect the association with the slopes of the outcome 

(e.g., “Sex × Time” reflects sex in association with the slopes of the outcome).  Asterisks reflect 

time-varying terms.  Terms in bold reflect significant associations at p < .05 level.  
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Supplementary Table S5. Results of HLM growth curve model of aggression while accounting 

for ADHD symptoms (and additional covariates). 

 
Outcome: Aggression B β SE df p 
intercept 9.67 -0.01 2.02 142 < .001 
Time 0.00 0.02 0.11 89 .971 
Sex 0.07 -0.03 0.86 142 .932 
Sex × Time -0.08 -0.04 0.11 89 .441 
Mean P3 amplitude -0.25 -0.10 0.12 142 .045 
Mean P3 amplitude × Time 0.02 0.04 0.02 89 .365 
*Time-varying P3 amplitude -0.25 -0.09 0.09 89 .007 
*ADHD symptoms 1.66 0.51 0.17 89 < .001 
*Number of bad channels -0.07 -0.04 0.07 89 .380 
*Number of infrequent trials kept -0.10 -0.11 0.05 89 .032 

 
Note: We examined growth curve models of aggression while accounting for ADHD symptoms 

to determine whether the association between P3 amplitudes and aggression was due to the 

comorbidity of aggression with attention problems, to advance our understanding of the 

specificity of the effects of the P3.  “Time” reflects the slope term, and is centered at the first 

time point so that the intercept reflects the child’s level at 30 months (i.e., 0, 6, 12 months from 

30 months).  “Sex” is coded with female = 1, male = 0.  “Mean P3 amplitude” refers to a given 

child’s mean P3 amplitude across time (time invariant).  “Time-varying P3 amplitude” refers to a 

given child’s P3 amplitude at a given time point that is centered around his or her mean P3 

amplitude across time (time varying).  Interaction terms with time essentially reflect the 

association with the slopes of the outcome (e.g., “Sex × Time” reflects sex in association with the 

slopes of the outcome).  Asterisks reflect time-varying terms.  Terms in bold reflect significant 

associations at p < .05 level.
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Supplementary Figure S1.  Left panel: Children’s PCA-derived P3 waveforms.  The waveform depicted represents the mean P3 

waveform from those electrodes with a 0.6 or greater factor loading onto the PCA component reflecting the P3 (i.e., the first tempor-

spatial PCA component; see Supplementary Appendix S2).  For purposes of depicting waveforms, electrodes from the PCA-derived 

posterior/parietal electrode cluster (see right panel with gray-shaded electrodes) were averaged with equal, unit weighting.  However, 

actual P3 amplitudes were calculated using PCA, in which all electrodes contribute to estimation of amplitudes to the extent that they 

reflect the underlying P3 component (based on factor loadings), thus accentuating those electrodes driving the signal.  This accounts 

for larger amplitudes in Supplementary Tables S2 and S3 than Figure 1 and Supplementary Figure S1. 

Right panel: Topo plot of the PCA component reflecting the P3.  Waveforms from electrodes shaded in gray have a 0.6 or greater 

factor loading onto the PCA component reflecting the P3. 

-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

-200 0 200 400 600 800 1000

Vo
lta

ge
 (m

ic
ro

vo
lts

)

Time (ms) Relative to Stimulus Onset

Frequent
Infrequent



19 
 

References 
 

Baillargeon, R. H., Normand, C. L., Séguin, J. R., Zoccolillo, M., Japel, C., Pérusse, D., . . . 

Tremblay, R. E. (2007). The evolution of problem and social competence behaviors 

during toddlerhood: A prospective population-based cohort survey. Infant Mental Health 

Journal, 28, 12-38. doi: doi:10.1002/imhj.20120 

Bell, M. A., & Cuevas, K. (2012). Using EEG to study cognitive development: Issues and 

practices. Journal of Cognition and Development, 13, 281-294. doi: 

10.1080/15248372.2012.691143 

Curran, P. J., & Bauer, D. J. (2011). The disaggregation of within-person and between-person 

effects in longitudinal models of change. Annual Review of Psychology, 62, 583-619. doi: 

10.1146/annurev.psych.093008.100356 

Curran, P. J., Lee, T., Howard, A. L., Lane, S., & MacCallum, R. C. (2012). Disaggregating 

within-person and between-person effects in multilevel and structural equation growth 

models. In G. R. Hancock & J. R. Harring (Eds.), Advances in longitudinal methods in 

the social and behavioral sciences. 

Dien, J. (2010). The ERP PCA Toolkit: An open source program for advanced statistical analysis 

of event-related potential data. Journal of Neuroscience Methods, 187, 138-145. doi: 

10.1016/j.jneumeth.2009.12.009 

Dien, J. (2012). Applying principal components analysis to event-related potentials: A tutorial. 

Developmental Neuropsychology, 37, 497-517. doi: 10.1080/87565641.2012.697503 

Dien, J., & Frishkoff, G. A. (2005). Introduction to principal components analysis of event-

related potentials. In T. C. Handy (Ed.), Event related potentials: A methods handbook 

(pp. 189-207). Cambridge, MA, US: MIT Press. 



20 
 

Duckworth, A. L., Tsukayama, E., & May, H. (2010). Establishing causality using longitudinal 

hierarchical linear modeling: An illustration predicting achievement from self-control. 

Social Psychological and Personality Science, 1, 311-317. doi: 

10.1177/1948550609359707 

Galla, B. M., Wood, J. J., Tsukayama, E., Har, K., Chiu, A. W., & Langer, D. A. (2014). A 

longitudinal multilevel model analysis of the within-person and between-person effect of 

effortful engagement and academic self-efficacy on academic performance. Journal of 

School Psychology, 52, 295-308. doi: 10.1016/j.jsp.2014.04.001 

Graham, J., Olchowski, A., & Gilreath, T. (2007). How many imputations are really needed? 

Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-

213. doi: 10.1007/s11121-007-0070-9 

Honaker, J., & King, G. (2010). What to do about missing values in time-series cross-section 

data. American Journal of Political Science, 54, 561-581. doi: 10.1111/j.1540-

5907.2010.00447.x 

Honaker, J., King, G., & Blackwell, M. (2011). Amelia II: A program for missing data. Journal 

of Statistical Software, 45, 1-47. doi: 10.18637/jss.v045.i07 

Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and 

applications (3rd ed.): Taylor & Francis. 

Hoyniak, C. P., Petersen, I. T., McQuillan, M. E., Staples, A. D., & Bates, J. E. (2015). Less 

efficient neural processing related to irregular sleep and less sustained attention in 

toddlers. Developmental Neuropsychology, 40, 155-166. doi: 

10.1080/87565641.2015.1016162 



21 
 

Johnstone, S. J., Barry, R. J., Anderson, J. W., & Coyle, S. F. (1996). Age-related changes in 

child and adolescent event-related potential component morphology, amplitude and 

latency to standard and target stimuli in an auditory oddball task. International Journal of 

Psychophysiology, 24, 223-238. doi: 10.1016/s0167-8760(96)00065-7 

Lumley, T. (2010). mitools: Tools for multiple imputation of missing data. R package version 2. 

Retrieved from http://cran.r-project.org/web/packages/mitools/ 

McNeish, D. M., & Stapleton, L. M. (2016). The effect of small sample size on two-level model 

estimates: A review and illustration. Educational Psychology Review, 28, 295-314. doi: 

10.1007/s10648-014-9287-x 

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D., and the R Core team. (2009). nlme: Linear and 

nonlinear mixed effects models. R package version 3.1-93. Retrieved from http://cran.r-

project.org/web/packages/nlme/index.html 

R Core Team. (2016). R: A language and environment for statistical computing. R Foundation 

for Statistical Computing. Vienna, Austria. Retrieved from http://www.R-project.org 

Rothbart, M. K., Ahadi, S. A., & Hershey, K. L. (1994). Temperament and social behavior in 

childhood. Merrill-Palmer Quarterly, 40, 21-39.  

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys: John Wiley & Sons, Inc. 

Schafer, J. L. (1997). Analysis of incomplete multivariate data (Vol. 72). New York, NY: 

Chapman & Hall/CRC. 

Scherbaum, C. A., & Ferreter, J. M. (2009). Estimating statistical power and required sample 

sizes for organizational research using multilevel modeling. Organizational Research 

Methods, 12, 347-367. doi: 10.1177/1094428107308906 

ttp://cran.r-project.org/web/packages/mitools/
ttp://cran.r-project.org/web/packages/mitools/
ttp://cran.r-project.org/web/packages/nlme/index.html
ttp://cran.r-project.org/web/packages/nlme/index.html
http://www.r-project.org/


22 
 

Wang, L., & Maxwell, S. E. (2015). On disaggregating between-person and within-person 

effects with longitudinal data using multilevel models. Psychological Methods, 20, 63-83. 

doi: 10.1037/met0000030 

 


	Petersen et al., 2018
	Petersen et al., 2018, supplemental info

