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Review

Probabilistic (0% to 100%) estimates and predictions are 
being used with increasing frequency in mental health 
research, with applications to confidence in clinical diagno-
ses, the probability of future onset of disease, the probability 
of remission, the probability of relapse, and risk assessment 
in various domains. Broad categories such as “high risk” or 
“low risk” are being replaced by the use of the full range of 
continuous risk assessment to guide the decision-making 
process (e.g., Baird & Wagner, 2000; Spiegelhalter, 1986). 
With increasing precision, patients can be assigned person-
alized probabilistic predictions for a variety of outcomes. 
Ever-expanding data sets and increasingly sophisticated sta-
tistical software allow for individualized probabilistic pre-
dictions. However, such predictions can only be useful if 
they accurately reflect the true underlying probabilities. 
Accuracy can be defined in a number of different ways, but 
a critical component of accuracy for personalized probabi-
listic predictions is calibration. Unfortunately, calibration 
has been largely neglected by clinical psychologists in favor 
of other measures of accuracy such as sensitivity, specificity, 
and area under the receiver operating characteristic (ROC) 
curve (AUC). In this article, we define calibration, discuss 
its relationship to other components of accuracy, and high-
light several examples in which calibration should be care-
fully considered by clinical psychologists. We argue that 
calibration is a critical aspect when evaluating the accuracy 
of personalized probabilistic predictions. When the goal is to 
make an optimal clinical decision, a clinician must be con-
cerned with probabilistic prediction (e.g., Spiegelhalter, 

1986). In many cases, it is important for probabilistic predic-
tions to be accurate over the full range of 0 to 1 (0% to 
100%) and not just accurate for a certain interval. Calibration 
is relevant both to individual predictions by “experts” and to 
statistical predictions from mathematical models. Many of 
the specific concepts and analyses discussed in this article 
are relevant to both, though some are only relevant to one or 
the other (e.g., overfitting in mathematical models and cog-
nitive biases in experts).

A Definition of Calibration

Calibration is a specific component of accuracy that mea-
sures how well a probabilistic prediction of an event 
matches the true underlying probability of the event (e.g., 
Jiang, Osl, Kim, & Ohno-Machado, 2012). That is, given 
that a particular event occurs with probability p, a well-cal-
ibrated predictive modeling technique will produce a cor-
responding estimate p  that is “close to” the true value p. In 
this sense, calibration is closely tied to the statistical notion 
of bias whereby for a particular parameter of interest θ , the 
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bias of a particular estimator θ  is defined as the expected 
difference, E( θ θ−  ). An important distinction, however, is 
that we are concerned here with predictions (estimates) of 
probabilities that are generally considered to be the result or 
output of a more complex model or algorithm. That is, 
instead of directly observing a series of probabilities 
p pn1,...,  from which we hope to produce an estimate p  of 

the true value p , we most often observe only a binary 
response (1 or 0; event did or did not occur) along with a set 
of predictor variables from which we hope to construct a 
model that will produce reliable estimates of the true under-
lying probability that the event will occur at each level of 
those predictor variables.

Because an event either occurs or it does not, it is impos-
sible to directly measure the true underlying probability of a 
one-time event. For this reason, the calibration of a statistical 
model or an individual forecaster can only be measured for a 
set of predictions. In practice, therefore, good calibration is 
defined, “in the sense that if a probability of 0.9 is given to 
each of a series of events, then about 90 percent of those 
events should actually occur” (Spiegelhalter, 1986; p. 425). 
This idea of “long-run frequency” is therefore aligned with 
the classic frequentist interpretation of probability. This 
means that if we were to examine the set of all days on which 
a weather forecaster predicts an 80% chance of rain, it should 
actually rain on approximately 80% of those days and not 
rain 20% of those days. So when, on occasion, a forecaster 
says there is an 80% chance of rain tomorrow and it does not 
rain, he or she is not necessarily “wrong.” In fact, we would 
expect this outcome to occur 20% of the time. If, on the other 
hand, we examined 100 such days on which the forecaster 
predicted an 80% chance of rain and rain occurred on 95% of 
those days, we might suspect miscalibration.

Although calibration has received much attention in 
other fields (e.g., meteorology), it has been relatively 
ignored in clinical psychology in favor of discrimination 
(e.g., ROC, AUC, sensitivity, specificity). Discrimination, a 
key construct in signal detection theory, is a distinct dimen-
sion of accuracy from calibration, and both are important to 
consider when evaluating predictive accuracy. Calibration 
is closer to the construct of “response bias” in signal detec-
tion theory (Macmillan & Creelman, 1990). Response bias 
is the propensity to favor one response over another in dis-
crimination tasks.1 It can measure, for example, whether the 
percentage of Response A matches the actual percentage of 
Event A. Calibration, is similar to response bias, but for 
probabilistic models. Like calibration, response bias has 
received less attention by psychologists than other mea-
sures of discrimination such as sensitivity (Macmillan & 
Creelman, 1990) and is sometimes left out of primers on 
signal detection theory entirely (e.g., Treat & Viken, 2012). 
It is important for our predictions to both correctly distin-
guish between the two outcomes (discrimination) and to 
agree with the actual rates of outcomes (calibration).2

Calibration and Its Relationship to 
Discrimination

Calibration and discrimination are orthogonal constructs that 
assess complementary but distinct components of accuracy. 
It is important for research in clinical psychology to consider 
both calibration and discrimination separately. To be clini-
cally and/or diagnostically useful in assessing risk, predictive 
models must be both well calibrated and have good discrimi-
nation (e.g., Steyerberg et al., 2010). Importantly, expertise 
has been sometimes associated with good discrimination but 
rarely with good calibration (Koehler, Brenner, & Griffin, 
2002). That is, individuals deemed experts may possess an 
excellent ability to distinguish between and correctly predict 
final outcomes, but may struggle to assign accurate probabili-
ties to such outcomes. Thus, calibration is an especially 
important factor to consider in clinical psychology where 
judgments and predictions are often made by expert clini-
cians and considering both calibration and discrimination is 
paramount for clinical psychologists to make the best deci-
sion regarding (a) whether to give a person a diagnosis and 
which diagnosis to give and (b) whether to apply an interven-
tion and which intervention to use.

Probabilistic models can have good discrimination but 
poor calibration (Schmid & Griffith, 2005). For example, if 
a statistical model applied to screening data (e.g., Vanderbilt 
Assessment Scale; Wolraich, Hannah, Baumgaertel, & 
Feurer, 1998) based on Diagnostic and Statistical Manual of 
Mental Disorders–5th edition (DSM-5; American Psychiatric 
Association, 2013) symptom counts for attention-deficit/
hyperactivity disorder (ADHD) estimates that all children 
with ADHD (e.g., confirmed diagnosis based on Schedule 
for Affective Disorders and Schizophrenia for School-Age 
Children [K-SADS]; Kaufman et al., 1997) have a probabil-
ity of .51 of having ADHD, and that all children without 
ADHD (e.g., also confirmed based on K-SADS) have a .49 
probability of having ADHD, the model would have perfect 
discrimination but very poor calibration. Models that are 
well calibrated are also not necessarily useful at classifica-
tion tasks (e.g., Spiegelhalter, 1986). An example of this is a 
model that always predicts the base rate of an event. For 
example, one could take a “bet the base rate” model (e.g., 
Youngstrom, Halverson, Youngstrom, Lindhiem, & Findling, 
2017) that uses the DSM-5 prevalence estimate of ADHD in 
children of 5%. If the model, based on the base rate, assigns 
a prediction that each child has a 5% probability of having 
ADHD, the model will have perfect calibration (in the sense 
that the predicted risk matches the observed rate exactly and 
sometimes referred to as “mean” calibration; see Van Calster 
et al., 2016) but low discrimination (the estimates do not dif-
ferentiate between children who have ADHD and those who 
do not). In this case, the model would be perfectly calibrated 
but does not provide any new information above and beyond 
the base rate. Such a model would indeed be useless in a 
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classification task. But the model could still be enormously 
useful to an individual patient for a prognostic task. If a 
patient is diagnosed with a potentially fatal disease, knowing 
the base rate for recovery would be immensely useful. For 
example, it would make an important difference to a patient 
if the base rate of recovery is .99 and not .20.

Risk assessment tools can also be well-calibrated for one 
range of the instrument but poorly calibrated for another 
range. For example, Duwe and Freske (2012) describe the 
Minnesota Sex Offender Screening Tool–3, which has good 
calibration for values below 40% but for values above 40%, 
the instrument overestimates the risk of sexual recidivism. 
Because 99% of offenders have scores below 40%, the 
instrument can still be very useful. It is also useful to know 
that for the 1% of offenders who have scores above 40%, the 
results overestimate the actual risk of recidivism. Similar 
instances of miscalibration just for the high-risk range of 
risk calculators are not uncommon (e.g., Fazel et al., 2016).

Metrics to Evaluate Calibration

Meteorologists have had an interest in calibration for over 
100 years, at least as far back as 1906 (Lichtenstein, 
Fischhoff, & Phillips, 1982). In 1950, a meteorologist at the 
U.S. Weather Bureau named Glenn Brier (1950) proposed 
an approach to verify the accuracy of probabilistic forecasts 
of binary weather events. Brier was concerned with forecast-
ers who “hedge” and forecast a value other than what he or 
she actually thinks. Early weather forecasters would hedge 
because consumers of weather forecasts (the public) were 
more critical if it rained when no rain was forecast (and per-
haps caught without an umbrella) than vice versa 
(Lichtenstein et al., 1982). Brier proposed a statistic, com-
monly referred to as a Brier score, for a set of probabilistic 
(0.0-1.0) predictions for binary events coded “1” or “0.” 
Given a particular probabilistic prediction p  where the true 
underlying probability is p, the Brier score for such a predic-
tion is defined as ( p p−  )2. The Brier score for a set of fore-
casts is simply the mean squared error, so that given a set of 
predictions p p n 

1,...,  with true probabilities p pn1,..., , the 
Brier score is
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A Brier score for single forecast of 80% (.80) for an event 
that occurs (“1”) would be (1 − .80)2 = .04. For a forecast of 
40% (.40) for an event that does not occur (“0”), the single 
Brier score would be (0 − .40)2 = .16. The average Brier 
score for the two predictions is (.04 + .16)/2 = .10. Two or 
more Brier scores can be averaged for a set of predictions to 
derive an overall measure of accuracy for evaluative pur-
poses (e.g., comparing two individual forecasters on a set of 
predictions). Lower scores indicate better accuracy but 
there are no established standards as the definition of a 

“good” Brier score depends on the base rate for the event 
that is being forecast as well as the difficulty of the forecast. 
As a benchmark, flipping a fair coin (average prediction of 
0.5) for a set of forecasts would result in a Brier score of 
0.25. The Brier score remains a popular measure of overall 
accuracy and is used widely with diverse applications rang-
ing from medical research (Rufibach, 2010) to forecasting 
tournaments (e.g., the Good Judgment Project; Tetlock, 
Mellers, Rohrbaugh, & Chen, 2014).

It is important to highlight that a Brier score is not a mea-
sure of calibration per se, but rather a measure of overall 
accuracy. However, Brier scores are important because they 
can be decomposed into components that specifically assess 
discrimination and calibration (Rufibach, 2010; 
Spiegelhalter, 1986). Spiegelhalter’s z-test statistic mea-
sures the calibration aspect of the Brier score (Redelmeier, 
Bloch, & Hickam, 1991; Rufibach, 2010). Given a set of 
observations (binary outcomes, 0 or 1) y yn1,...,  along with 
associated predicted probabilities p p n 

1,..., , Spiegelhalter’s 
z-test statistic is defined as,
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and asymptotically follows a standard normal distribution. 
The null hypothesis of the associated statistical test is that the 
model is well-calibrated, so statistically significant scores 
(i.e., z < −1.96 or z > 1.96) generally indicate poor calibration. 
As with any z test, the interpretation of p values should take 
into consideration the sample size and resulting statistical 
power. Conventional alpha levels (e.g., .05 or .01) may not be 
appropriate for very small or very large samples. Regardless 
of the sign of the z value (positive or negative), larger absolute 
values of z indicate a greater degree of miscalibration.

Another commonly used measure of calibration is the 
Hosmer–Lemeshow (HL) goodness-of-fit statistic (Hosmer 
& Lemeshow, 1980; Schmid & Griffith, 2005). To calculate 
the statistic, one first divides the set of observations into G 
groups where G is selected by the user. The default for G is 
10 for most software programs but typically ranges from 2 
to 10 depending on the sample size and range of predic-
tions. For a given value of G, the HL statistic is defined as,
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where OBSig  denotes the number of events in group g  with 
outcome i (where i = 0 or 1) and EXPig  is the expected num-
ber of events in group g  with outcome i, determined by 
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taking the average predicted probability across all observa-
tions in group g . The HL statistic has an approximate chi-
squared distribution with G − 2 degrees of freedom and is 
designed to measure the fit between predicted proportions 
and those actually observed. Like Spiegelhalter’s z-test sta-
tistic, large values of the HL statistic (low corresponding  
p values) indicate poor calibration. A common benchmark 
for poor calibration for the HL statistic is p < .05, but like all 
inferential statistics this is somewhat arbitrary and may not 
be appropriate for very small or very large data sets. The HL 
statistic has other disadvantages including dependence on 
the selected G, low statistical power for small samples, and 
no information on the direction or pattern on miscalibration 
(Steyerberg, 2008).

Due to the limitations of summary statistics, calibration 
should ideally be evaluated using more than one statistic in 
addition to a graphical approach (e.g., Griffin & Brenner, 

2004; Lichtenstein et  al., 1982). Graphical approaches are 
essentially qualitative and can be used to supplement sum-
mary statistics such as Spiegelhalter’s z-test statistic or the 
HL statistic. The typical graphical approach involves plot-
ting predicted probabilities (x-axis) against actual probabili-
ties (y-axis) using a smoothing technique. Such calibration 
plots typically include a diagonal reference line signifying 
perfect calibration. An early approach described by Copas 
(1983a) is to use a smoothed histogram of predicted proba-
bilities and observed proportions. A very similar approach is 
to use a locally weighted scatterplot smoothing (LOWESS) 
plot with predicted probabilities on the x-axis and LOWESS-
smoothed actual probabilities (i.e., observed proportions) on 
the y-axis (e.g., Duwe & Freske, 2012). One benefit of 
graphical techniques is that patterns of miscalibration can 
easily be identified. See Figure 1 for sample calibration plots 
showing common patterns of miscalibration.

Figure 1.  Common patterns of miscalibration: (A) Overextremity, (B) Underextremity, (C) Overprediction, and (D) 
Underprediction.
Note. Perfect calibration is represented by the diagonal line.
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Additional measures and tests of calibration are specific to 
external validation (i.e., testing the model performance on an 
external data set). Models generally tend to be well calibrated 
when applied to the original data set, sometimes referred to as 
“apparent calibration” (Harrell, 2015; Steyerberg, 2008). This 
is due partly to overfitting and presents an overly optimistic 
view of how the model will perform when applied to a new 
data set (Babyak, 2004; Moons et al., 2012). Internal valida-
tion methods such as k-fold and leave-one-out cross-valida-
tion can detect calibration problems caused by overfitting but 
are insufficient if there are important differences (e.g., base 
rates or regression coefficients) between the original data set 
and an external data set (Bleeker et al., 2003). Internal valida-
tion may be sufficient for “temporal transportability” in which 
a model is applied to future patients at the same clinic but not 
for “geographic transportability” in which a model is applied 
to a new clinic (König, Malley, Weimar, Diener, & Ziegler, 
2007). External validation is critical if a model developed in 
one setting is to be used in another setting (Bleeker et  al., 
2003; König et  al., 2007; Moons et  al., 2012; Youngstrom 
et  al., 2017). Miscalibration is common when a model is 
applied to a new data set, evidenced by differences in the 
intercept and/or slope of the calibration plots between the 
original data set and external data set (Harrell, 2015; 
Steyerberg, 2008). Differences in the intercept indicate prob-
lems with overprediction or underprediction, whereas differ-
ences in the slope indicate problems with overextremity or 
underextremity. A recalibration test can be used to determine 
whether the calibration plot for the model deviates from an 
intercept of 0 and slope of 1. If necessary, the new model can 
be recalibrated to achieve “logistic calibration” with intercept 
of 0 and slope of 1 (Harrell, 2015; Van Calster et al., 2016).

Patterns of Miscalibration

Terms such as “overconfidence” are often used to describe 
miscalibration but can be misleading due to their impreci-
sion (Griffin & Brenner, 2004; Lichtenstein et  al., 1982; 
Moore & Healy, 2008). There are two common ways for a 
set of predictions to be “overconfident.” The first is for the 
set of predictions to be consistently higher than the actual 
proportion of outcomes across the full range of predictions. 
In this scenario, the calibration curve is entirely below the 
reference line of a calibration plot. This pattern is often 
referred to as “overprediction,” although the term “specific 
overconfidence” has also been used. The second is for the 
set of predictions to be consistently too close to 0 or 1. In 
this scenario, the calibration curve is above the reference 
line of a calibration plot for values below 0.5 and below the 
reference line for values above 0.5, often looking like a 
backward “s” (see Figure 1). This pattern is often referred to 
as “overextremity” and is typical of statistical overfitting. 
The term “generic overconfidence” has also been used to 
describe this pattern.

Similarly, there are two common ways for a set of pre-
dictions to be “underconfident.” The first is for the set of 
predictions to be consistently lower than the actual propor-
tion of outcomes across the full range of predictions. In this 
scenario, the calibration curve is entirely above the refer-
ence line of a calibration plot. This pattern is often referred 
to as “underprediction,” although the term “specific under-
confidence” has also been used. The second is for the set of 
predictions to be consistently too close to 0.5. In this sce-
nario, the calibration curve is below the reference line of a 
calibration plot for values below 0.5 and above the refer-
ence line for values above 0.5 (somewhat “s” shaped). This 
pattern is often referred to as “underextremity,” although 
the term “generic underconfidence” has also been used.

Illustrations

Table 1 shows generated estimates from four hypothetical 
models. Model A has both good discrimination and good 
calibration. With a cut-score (also referred to as a cutoff or 
threshold) of 0.50, the model can accurately predict all 10 
events (AUC = 1.00). The model also has good calibration. 
Events that were forecast in the 90% to 100% likelihood 
range (0.90-1.00) occurred 100% of the time. Events that 
were forecast in the 0% to 10% likelihood range (0.00-0.10) 
occurred 0% of the time. Formal calibration statistics also 
indicate good calibration (Spiegelhalter’s z = −.73, p = .4680; 
HL goodness-of-fit = 0.53, p = .9975). See Figure 2 for cali-
bration plot of Model A.

Model B has good discrimination but poor calibration. 
As with Model A, Model B can accurately predict all 10 
events with a cut-score of .50 (AUC = 1.00). However, 
the model has poor calibration. Events that were forecast 
at 60% likelihood (.60) occurred 100% of the time. Events 
that were forecast at 40% likelihood (.40) occurred 0% of 
the time. Formal calibration statistics also indicate poor 
calibration (Spiegelhalter’s z = −2.58, p = .0098; HL 
goodness-of-fit = 6.67, p = .0357). See Figure 2 for cali-
bration plot of Model B.

Model C has poor discrimination but good calibration. 
With a cut-score of .50, the model can only predict the 
events at the level of chance (AUC = .50). However, the 
model has good calibration. Events that were forecast in 
the 45% to 55% likelihood range (.45 to .55) occurred 
50% of the time. Formal calibration statistics also indi-
cate good calibration (Spiegelhalter’s z = .04, p = .9681; 
HL goodness-of-fit = 0.00, p = 1.0000). See Figure 2 for 
calibration plot of Model C.

Model D has both poor discrimination and poor cali-
bration. As with Model C, Model D can only predict  
the events at the level of chance with a cut-score of .50 
(AUC = .50). The model also has poor calibration. Events 
that were forecast in the 5% to 15% likelihood range  
(.5 to .15) occurred 50% of the time. Events that were 
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forecast in the 85% to 95% likelihood range (.85 to .95) 
occurred 50% of the time. Formal calibration statistics 
also indicate poor calibration (Spiegelhalter’s z = 4.23,  
p = .0000; HL goodness-of-fit = 17.98, p = .0030). See 
Figure 2 for calibration plot of Model D.

Examples of Calibration in Psychology

Cognitive Psychology

The domain in psychology where calibration has possibly 
received the greatest attention is the cognitive psychology 
literature on overconfidence. In this context, the probabilis-
tic estimates are generated by human forecasters rather than 
mathematical models. One of the most common findings on 
calibration in this context is that, although there are some 
exceptions, people (including experts) tend to be overconfi-
dent in their judgments and predictions. Overconfidence is 
studied in various ways. One way is by asking people to 
make a judgment/prediction (e.g., “Will it rain tomorrow? 
[YES/NO]”) followed by asking them to rate their confi-
dence (as a percentage) in their answer. Confidence in a 
dichotomous judgment (yes/no) expressed as a percentage 
(0% to 100%) is mathematically identical to a probabilistic 
prediction (0.00-1.00) of a dichotomous event. When mak-
ing such probability judgments, a person would be consid-
ered well-calibrated if his or her responses match the relative 
frequency of occurrence (i.e., judgments of 70% are correct 
70% of the time). The most persistent finding in the over-
confidence literature is that of widespread overprecision 
(overextremity) of judgments/predictions. That is, people 

tend to make predictions with too extreme probability judg-
ments (Moore & Healy, 2008). Researchers have examined 
the reasons for overconfidence. Calibration can improve in 
response to feedback (e.g., Bolger & Önkal-Atay, 2004), 
suggesting that overconfidence may result, in part, from 
cognitive biases. Anchoring and adjustment occurs when 
someone uses insufficient adjustment from a starting point 
or prior probability, known as the anchor (Tversky & 
Kahneman, 1974). Other research suggests additional cogni-
tive biases may be involved in overconfidence, including the 
confirmation bias (Hoch, 1985; Koriat, Lichtenstein, & 
Fischhoff, 1980) and base rate neglect (Koehler et al., 2002).

In addition, although many experts have been shown to 
have poor calibration in their predictions or judgments includ-
ing clinical psychologists (Oskamp, 1965), physicians 
(Koehler et al., 2002), economists (Koehler et al., 2002), stock 
market traders and corporate financial officers (Skala, 2008), 
lawyers (Koehler et al., 2002), and business managers (Russo 
& Schoemaker, 1992), there are some cases of experts show-
ing good calibration. For instance, experts in weather fore-
casting (Murphy & Winkler, 1984), horse race betting 
(Johnson & Bruce, 2001), and playing the game of bridge 
(Keren, 1987) have shown excellent calibration (but see 
Koehler et al., 2002, for exceptions to these exceptions). The 
reasons for high calibration among experts in these domains 
likely include that they receive clear, consistent, and timely 
outcome feedback (Bolger & Önkal-Atay, 2004). It is unlikely, 
however, that clinical psychologists receive timely outcome 
feedback regarding their diagnostic decisions or other clinical 
predictions, suggesting that clinical psychologists are likely to 
be poorly calibrated in their judgments and predictions 

Table 1.  Discrimination and Calibration of Four Hypothetical Models.

Model A Model B Model C Model D Actual event

Prediction 1 0.94 0.60 0.49 0.89 Yes (1)
Prediction 2 0.96 0.60 0.51 0.91 Yes (1)
Prediction 3 0.95 0.60 0.50 0.90 Yes (1)
Prediction 4 0.94 0.60 0.50 0.11 Yes (1)
Prediction 5 0.96 0.60 0.50 0.09 Yes (1)
Prediction 6 0.04 0.40 0.49 0.89 No (0)
Prediction 7 0.06 0.40 0.51 0.91 No (0)
Prediction 8 0.05 0.40 0.50 0.90 No (0)
Prediction 9 0.04 0.40 0.50 0.11 No (0)
Prediction 10 0.06 0.40 0.50 0.09 No (0)
Brier score (MSE) 0.0026 0.1600 0.2500 0.4101  
Hosmer–Lemeshow 0.53 6.67 0.00 17.98  
p .9975 .0357 1.0000 .0030  
Spiegelhalter’s z −0.7258 −2.5800 0.0400 4.2268  
p .4680 .0098 .9681 .0000  
AUC 1.0000 1.0000 0.5000 0.5000  
Discrimination Good Good Poor Poor  
Calibration Good Poor Good Poor  

Note. MSE = mean squared error; AUC = area under the ROC curve.
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(consistent with findings from Oskamp, 1965 and assertions 
by Smith & Dumont, 1997). Nevertheless, overprecision/
overextremity is common even among experts (Moore & 
Healy, 2008), and a meta-analysis of five domains of experts 
(including weather forecasters) showed that all domains of 
experts show systematic miscalibration (Koehler et al., 2002).

Koehler et  al. (2002) found that physicians routinely 
ignored the base rate in their judgments and predictions. The 
researchers found that the physicians’ pattern of miscalibra-
tion was strongly related to the base rate likelihood of the 
target event (consistent with findings from Winkler & Poses, 
1993), and to a lesser extent, to the discriminability of the 
relevant hypotheses (i.e., the strength of evidence for mak-
ing a correct decision). Specifically, they found that physi-
cians showed underprediction when the base rate was high 
and discriminability was high (e.g., ICU survival), fair cali-
bration when the base rate was low and discriminability was 

high (e.g., myocardial infarction), and overprediction when 
the base rate was very low and discriminability was low 
(e.g., pneumonia). The authors interpreted these findings as 
suggesting that physicians’ decisions were strongly related 
to the support for the relevant hypotheses (e.g., the represen-
tativeness heuristic, availability heuristic, and confirmation 
bias) rather than to the base rate or discriminability of the 
hypothesis. For a discussion of physicians’ errors in probabi-
listic reasoning by neglecting base rates, see Eddy (1982).

We suspect it is likely that clinical psychologists, similar 
to other health care professionals (and people in general), 
show poor calibration because of neglecting the base rate 
likelihoods of diagnoses and events. Miscalibration is par-
ticularly likely when base rates are low (e.g., the diagnosis 
of ADHD in primary care) leading to overprediction or 
when base rates are high (e.g., noncompliance in 2-year-
olds) leading to underprediction (Koehler et al., 2002).

Figure 2.  Calibration plots for Model A (good discrimination and good calibration), Model B (good discrimination and poor 
calibration), Model C (poor discrimination and good calibration), and Model D (poor discrimination and poor calibration).
Note. Perfect calibration is represented by the diagonal line.
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Clinical Psychology

We are aware of very few studies that have examined cali-
bration in clinical psychology. As described earlier, some 
studies have examined the calibration of predictive models 
of criminal recidivism (Duwe & Freske, 2012; Fazel et al., 
2016). Other studies have examined the calibration of pre-
dictive models of depression and suicide. Perlis (2013) 
examined predictive models of treatment resistance in 
response to pharmacological treatment for depression. 
Calibration was evaluated using the HL goodness-of-fit test 
and concluded that for such data sets, logistic regression 
models were often better calibrated than predictive models 
based on machine learning approaches (naïve Bayes, ran-
dom forest, support vector machines). The author hypothe-
sized that this finding may be at least partially attributed to 
the fact that such machine learning approaches construct 
models that maximize discrimination regardless of calibra-
tion. Thus, as discussed earlier, when building models and 
evaluating their accuracy, it is important for prediction 
models to consider both discrimination and calibration.

One other recent study (Lindhiem, Yu, Grasso, Kolko, & 
Youngstrom, 2015) evaluated the calibration of the poste-
rior probability of diagnosis index. The posterior probabil-
ity of diagnosis index measures the probability that a patient 
meets or exceeds a diagnostic threshold (Lindhiem, Kolko, 
& Yu, 2013). In a pediatric primary-care sample, the index 
performed well in terms of discrimination (AUC) but was 
not well calibrated (Lindhiem et al., 2015). With too many 
predictions below .05 and above .95, the calibration plot 
(backward “S”) was characteristic of an “overconfident” 
model. A recalibration method was proposed to recalibrate 
the index to improve calibration while maintaining the 
strong discrimination.

Finally, a recent study describing the development of a 
risk calculator to predict the onset of bipolar disorder in 
youth evaluated the tool for calibration (Hafeman et  al., 
2017). Similar to some of the recidivism/relapse predic-
tion tools described earlier, the risk calculator was well 
calibrated in the validation sample across a fairly narrow 
range of predictions (0.00 to 0.24). External validation 
was not examined to test the performance of the tool in a 
clinical setting.

Methods to Improve Calibration

Unless properly accounted for, many predictive modeling 
techniques can produce predictions with adequate discrimi-
nation but poor calibration (Jiang et  al., 2012). Left 
unchecked, many statistical models including machine 
learning methods and logistic regression are susceptible to 
overfitting, wherein a model is constructed, that is, overly 
biased to the particular data at hand and therefore does not 
generalize well (i.e., produces inaccurate predictions) on 

new data (Babyak, 2004). As noted above, overextremity is 
a type of overconfidence in which predictions are consis-
tently too close to 0.0 or 1.0. An example is a model for 
which predictions of events at 95% probability actually 
occur 75% of the time, while predictions of events at 5% 
probability actually occur 25% of the time. If a model is to 
be used for individualized purposes, such as making a pre-
diction for a particular patient, it is critical to ensure that the 
model predictions have adequate calibration. Calibration 
can be examined and potentially improved either during the 
model development phase or later when the model is applied 
to new data.

Overfitting during the model development phase often 
causes the calibration slope to be less than one when applied 
to an external data set (Harrell, 2015). The value of the new 
slope, referred to as the “shrinkage factor” can be applied to 
the model to correct this type of miscalibration. For exam-
ple, regression coefficients can be “preshrunk” so that the 
slope of the calibration plot will remain one on external 
validation (Copas, 1983b; Harrell, 2015). If an external data 
set is not available and the shrinkage factor cannot be deter-
mined, internal cross-validation techniques are generally 
considered the next-best option. Internal cross-validation 
involves partitioning the data set into k nonoverlapping 
groups of roughly equal size; one group is then held out, 
while a model is constructed using the remaining k-1 groups 
and the accuracy is evaluated by making predictions on the 
hold-out set and comparing with the observed values. The 
process is repeated for each of the k groups yielding k esti-
mates of accuracy that are averaged to provide a final mea-
sure. This entire process can then be repeated on different 
predictive modeling methods to compare performance and/
or on the same method under a variety of slight alterations, 
often governed by a tuning parameter that is designed to 
trade off overfitting and underfitting. Under this setup, the 
same modeling approach is applied a number of times, each 
time with a different value of the tuning parameter thereby 
yielding different sets of predicted values. Internal cross-
validation errors are computed for each level of the tuning 
parameter and final predictions are generally taken as those 
that minimize the error. This method of tuning a particular 
model aims to strike a balance in using enough information 
in the data to make useful insights without being overly 
biased to the data in the sample at hand (overfitting) and is 
essential for learning methods that are highly sensitive to 
tuning parameter values such as “lasso” (Tibshirani, 1996) 
or gradient boosting (Friedman, 2001). As noted earlier, 
internal cross-validation may be sufficient to ensure that a 
model has “temporal transportability” (e.g., same clinic but 
with future patients) but insufficient to ensure “geographic 
transportability” (e.g., different clinic; König et al., 2007). 
There is no substitute for external validation if a model is to 
be applied in a new setting (Bleeker et  al., 2003; König 
et al., 2007; Moons et al., 2012).
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Other traditional methods to improve the calibration of 
predictive models include binning, Platt scaling, and iso-
tonic regression, but there is evidence that these approaches 
can fail to improve calibration (Jiang et  al., 2012). Jiang 
et al. have proposed a method called adaptive calibration of 
predictions, an approach that uses individualized confi-
dence intervals, to calibrate probabilistic predictions. In this 
method, all of the predictions from a training data set that 
fall within the 95% confidence interval of the target predic-
tion (the estimate to be calibrated) are averaged, with this 
new value replacing the original estimate.

Another method to recalibrate probabilistic estimates 
uses Bayes’ theorem and a training data set (Lindhiem et al., 
2015). The general formula is as follows:

p
p p

p
(event | estimate)

(estimate | event) (event)

(estimate)
=

where p(event | estimate) is the recalibrated estimate, 
“event” is the actual occurrence of the event in the training 
data set (coded “0” or “1”), and “estimate” is the original 
model estimate (ranging from 0.00 to 1.00). p(event) is the 
base rate of the event in the training data set. A k-nearest 
neighbor algorithm is used to smooth the estimates because 
not all model estimates can be represented in the training 
data set. The method has been shown in some instances to 
enhance the calibration of probabilistic estimates without 
reducing discrimination.

There are also various methods for improving the cali-
bration of “expert” predictions based on clinical judgment 
(Lichtenstein et al., 1982). It is well-documented that diag-
nosticians, including mental health professionals, tend to be 
overconfident in their professional judgments (e.g., Smith 
& Dumont, 1997). Methods to correct for this predictable 
pattern of miscalibration include instruction in the concept 
of calibration, warnings about overconfidence, and feed-
back about performance (e.g., Stone & Opel, 2000). The 
evidence for the effectiveness of these and other methods is 
mixed, and depends on numerous factors including the dif-
ficulty of subsequent prediction tasks.

A Clinical Example

Next, we illustrate the importance of calibration for developing 
predictive models to screen for mental health diagnoses, using 
the ABACAB data set (N = 819; see Youngstrom et al., 2005). 
ABACAB was designed as an assessment project with specific 
aims including establishing the base rate of bipolar spectrum 
and other disorders in community mental health, examining 
the accuracy of clinical diagnoses compared with research 
diagnoses based on a consensus review process with trained 
interviewers using recommended semistructured methods, and 
assessing the diagnostic accuracy of rating scales and risk fac-
tors that were recused from the diagnostic formulation process 
(see Youngstrom et al., 2005, for additional details).

For this example, we used several supervised learning 
techniques to predict the likelihood of a bipolar disorder 
diagnosis from brief screening data. The outcome variable 
was a consensus diagnosis of any bipolar disorder based on 
the K-SADS (Kaufman et  al., 1997). The predictor vari-
ables were 11 items from the parent-completed Mood 
Disorder Questionnaire (Wagner et al., 2006). We explored 
a variety of supervised learning techniques to assign pre-
dicted probabilities for a bipolar diagnosis based on the 
Mood Disorder Questionnaire items, including both classic 
statistical approaches (naïve Bayes and logistic regression) 
as well as more modern tree-based methods (classification 
and regression tree [CART] and random forests).

Naïve Bayes

Naïve Bayes assigns a probability of class membership to 
each observation based on Bayes rule under the assumption 
that predictor variables (features) are independent conditional 
on belonging to a particular class (e.g., Kononenko, 1990).

Logistic Regression

Logistic regression, a classic parametric statistical method, 
is a generalized linear model in which the log odds of the 
response are assumed to be a linear function of the features 
(e.g., McCullagh & Nelder, 1989).

Classification and Regression Tree

We used a single regression tree built according to the popular 
CART methodology (Breiman, Friedman, Stone, & Olshen, 
1984). In this approach, the feature space is recursively parti-
tioned by splitting observations into response-homogeneous 
bins. After construction, the probability that a particular obser-
vation’s response is “1” is predicted by averaging the response 
values (0’s and 1’s) located within the corresponding bin.

Random Forest

Finally, random forest (Breiman, 2001) represents an exten-
sion of CART that involves resampling of the single CART 
tree in which several (in our case, 500) regression trees are 
constructed—each built with a bootstrap sample of the orig-
inal data—and then decorrelated by randomly determining 
subspaces in which splits may occur. Final predictions are 
obtained by taking a simple average of the predictions gen-
erated by each individual tree.

Model Building, Internal Cross-Validation, and 
Model Comparisons

Each of the four predictive models were built and evaluated 
using the full data set and also with fivefold internal 
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cross-validation. Both approaches were taken to illustrate the 
importance of internal cross-validation in evaluating model 
performance. Model results are summarized in Table 2 and 
Figures 3 and 4. Significant p values for both Spiegelhalter’s 
z and HL chi-square test suggest that naïve Bayes and random 
forest were poorly calibrated when using both the full data set 
and fivefold internal cross-validation. The calibration plots—
Figures 3 and 4—also reflect poor calibration. Both 
Spiegelhalter’s z and the HL chi-square test indicate perfect 
calibration with the CART-based regression tree when the full 
data set was used to train the model, but poor calibration using 
fivefold internal cross-validation. The perfect calibration in 
the full data set is an artifact of the CART algorithm and high-
lights the importance of evaluating model performance using 
internal cross-validation (for which CART produced poorly 
calibrated predictions). Logistic regression was generally 
well-calibrated in both the full data set and using fivefold 
internal cross-validation, as evidence by the calibration plots 
and statistics. Although the p value for Spiegelhalter’s z was 
below .05 using fivefold internal cross-validation, the HL chi-
square remained nonsignificant (p = .3208).

When to Prioritize Calibration Over 
Discrimination

The statistical analyses performed must match the research 
question or practical problem that it is intended to address 
(Spiegelhalter, 1986). In general terms, discrimination anal-
yses are most relevant for classification tasks, whereas cali-
bration is important for predictive/prognostic tasks.

Discrimination Analyses for Classification Tasks

Discriminant analysis is appropriate when the goal is to 
assign a group of patients into established categories 

(Spiegelhalter, 1986). Mental health diagnoses have tradi-
tionally been treated as dichotomous categories (e.g., pres-
ence/absence of diagnosis), lending conveniently to 
discriminant analysis. Analyses are typically done using 
ROC analyses and the associated AUC statistic (sometimes 
also called the c statistic or c-index). An ROC curve is a plot 
of sensitivity (true positive rate) on the y-axis and 1 − speci-
ficity (false positive rate) on the y-axis across the full range 
of cut-scores. The AUC statistic is a measure of the area 
under the ROC curve. A purely random model would have 
an AUC of 0.5 and a perfect model would have an AUC of 
1.0. The AUC statistic is therefore oftentimes a useful met-
ric for evaluating the accuracy of diagnostic testing (Cook, 
2007). In this case, there is objective, and naturally dichoto-
mous, group membership. The goal is to correctly assign 
group membership to as many patients as possible.

Calibration Analyses for Predictive Tasks

Calibration becomes important when estimating the true 
underlying probability of a particular event, such as is the 
case in risk assessment (Cook, 2007). Examples include 
risk calculators designed to estimate the likelihood of vio-
lent reoffending among inmates released from prison (e.g., 
Fazel et al., 2016). In these instances, stochastic (i.e., ran-
dom) processes are assumed to be at play and predictions 
must therefore be made in probabilistic terms. As noted 
earlier, a model that correctly predicts all events (“1”s) to 
occur with probability greater than 0.5 and all nonevents 
(“0”s) to occur with probability less than 0.5 will have 
perfect discrimination even though the individual predic-
tions may have little meaning. If correct overall classifica-
tion is all that matters, then the individual predicted 
probabilities are of no consequence. On the other hand, 
when evaluating the accuracy of a probabilistic prediction 

Table 2.  Discrimination and Calibration for Four Predictive Models.

Naïve Bayes CART Random forest Logistic regression

Full data set (no cross-validation)
Brier score (MSE) .2045 .1202 .0893 .1153
Hosmer–Lemeshow 153809.83 0.00 34.83 13.84
  p .0000 1.0000 .0001 .1802
Spiegelhalter’s z 41.8198 0.0000 −3.9950 0.2616
  p .0000 1.0000 .0001 .7936
AUC .8283 .8047 .9229 .8380
With fivefold cross-validation
Brier score (MSE) .2085 .1366 .1316 .1266
Hosmer–Lemeshow 138421.81 81.62 36.06 11.49
  p .0000 .0000 .0001 .3208
Spiegelhalter’s z 42.6386 2.9713 2.6733 2.3604
  p .0000 .0000 .0075 .0183
AUC .8149 .7194 .7734 .8380

Note. CART = classification and regression tree; MSE = mean squared error; AUC = area under the ROC curve.
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of a specific clinical outcome for a particular patient, 
model fitting and discriminant analyses alone are not 
appropriate (Spiegelhalter, 1986). Calibration is also 
important when model output will otherwise be used by a 
physician and/or patient to make a clinical decision (e.g., 
Steyerberg et  al., 2010). This is because the individual 
predicted probabilities now have practical significance 
(and may be of paramount concern to the individual 
patient). It is now important that a value of 0.25, for exam-
ple, can be interpreted to mean that the patient has a 25% 
chance of developing a disease. In other words, prediction 
requires the assessment of absolute risk and not just rela-
tive risk (e.g., beta weights, odds ratios). Examples include 
risk calculators designed to estimate the likelihood of vio-
lent reoffending among inmates released from prison (e.g., 
Fazel et  al., 2016). In selecting a predictive model, it is 
important that calibration be high for a new data set (as 
can be evaluated by internal cross-validation, e.g.,) and 
not just for the training data set (Schmid & Griffith, 2005).

Implications for Clinical Psychology

Calibration is particularly relevant for predicting recidivism 
(e.g., Fazel et al., 2016). It has been shown that predictive 
tools can overestimate the probability of recidivism even 
though they have good discrimination (e.g., Duwe & Freske, 
2012). For a tool designed to assess the risk of recidivism to 
be well-calibrated, the predicted probabilities must closely 
match actual recidivism rates. This clearly has real-world 
consequences for those facing parole decisions. Calibration 
is also important when expert diagnosticians assign confi-
dence values to diagnoses for which no definitive (100% 
accurate) tests are available. For example, for all diagnoses 
in which confidence is assigned in the .70 to .79 ranges, the 
diagnosis should in fact be present roughly 70% to 79% of 
the time. It is well documented that individuals tend to be 
overconfident on difficult and moderately difficult tasks and 
underconfident on easy tasks. Furthermore, calibration tends 
to be better when the base rate of the event being predicted 
is close to 50% and worse for rare events (Lichtenstein et al., 

Figure 3.  Calibration plots for four models using the full data set (no internal cross-validation): Naïve Bayes (top, left), CART (top, 
right), random forest (bottom, left), and logistic regression (bottom, right).
Note. CART = classification and regression tree. Perfect calibration is represented by the diagonal line.
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1982). Calibration is also critical to consider when develop-
ing models to predict the onset of disorder in the future, the 
probability of remission, or the probability or relapse. 
Finally, calibration is a key construct to consider when 
developing any psychological test for which the results are 
presented as probability values and interpreted as such.

Summary and Conclusion

In summary, although calibration has received less attention 
from clinical psychologists over the years, relative to dis-
crimination, it is a crucial aspect of accuracy to consider for 
all prognostic models, clinical judgments, and psychologi-
cal testing. It will become increasingly important in the 
future as advances in computing lead to an increasing reli-
ance on probabilistic assessments and risk calculators. 
Good calibration is crucial for making personalized clinical 
judgments, diagnostic assessments, and to psychological 
testing in general. Better attention to calibration, in addition 

to discrimination, should promote more accurate predictive 
models, more effective individualized care in clinical psy-
chology, and improved psychological tests.
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Notes

1.	 The term “response bias” has a different meaning in the area 
of validity scale research where it is used to describe biased 
patterns of responses to self-report or test items such as overre-
porting, underreporting, fixed reporting, and random reporting.

2.	 Another important side note is that the term “calibration” 
has been defined differently in related fields. In the area of 
human judgment and metacognitive monitoring, for example, 
calibration has been defined as the fit between a rater’s judg-
ment of performance on a task and actual performance (e.g., 
Bol & Hacker, 2012). Throughout this article, we use the 
term “calibration” only in the specific sense defined in the 
preceding paragraph, namely, the degree to which a probabi-
listic prediction of an event reflects the true underlying prob-
ability of that event.
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